|
|
@@ -12,6 +12,9 @@ import libs.vision_libs.models.detection._utils as det_utils
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
+from models.line_detect.heads.head_losses import point_inference, compute_point_loss, line_iou_loss, \
|
|
|
+ lines_point_pair_loss, features_align
|
|
|
+
|
|
|
|
|
|
def fastrcnn_loss(class_logits, box_regression, labels, regression_targets):
|
|
|
# type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
|
|
|
@@ -129,270 +132,6 @@ def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs
|
|
|
)
|
|
|
return mask_loss
|
|
|
|
|
|
-def normalize_tensor(t):
|
|
|
- return (t - t.min()) / (t.max() - t.min() + 1e-6)
|
|
|
-
|
|
|
-def line_length(lines):
|
|
|
- """
|
|
|
- 计算每条线段的长度
|
|
|
- lines: [N, 2, 2] 表示 N 条线段,每条线段由两个点组成
|
|
|
- 返回: [N]
|
|
|
- """
|
|
|
- return torch.norm(lines[:, 1] - lines[:, 0], dim=-1)
|
|
|
-
|
|
|
-def line_direction(lines):
|
|
|
- """
|
|
|
- 计算每条线段的单位方向向量
|
|
|
- lines: [N, 2, 2]
|
|
|
- 返回: [N, 2] 单位方向向量
|
|
|
- """
|
|
|
- vec = lines[:, 1] - lines[:, 0]
|
|
|
- return F.normalize(vec, dim=-1)
|
|
|
-
|
|
|
-def angle_loss_cosine(pred_dir, gt_dir):
|
|
|
- """
|
|
|
- 使用 cosine similarity 计算方向差异
|
|
|
- pred_dir: [N, 2]
|
|
|
- gt_dir: [N, 2]
|
|
|
- 返回: [N]
|
|
|
- """
|
|
|
- cos_sim = torch.sum(pred_dir * gt_dir, dim=-1).clamp(-1.0, 1.0)
|
|
|
- return 1.0 - cos_sim # 或者 torch.acos(cos_sim) / pi 也可
|
|
|
-
|
|
|
-
|
|
|
-def line_length(lines):
|
|
|
- """
|
|
|
- 计算每条线段的长度
|
|
|
- lines: [N, 2, 2] 表示 N 条线段,每条线段由两个点组成
|
|
|
- 返回: [N]
|
|
|
- """
|
|
|
- return torch.norm(lines[:, 1] - lines[:, 0], dim=-1)
|
|
|
-
|
|
|
-def line_direction(lines):
|
|
|
- """
|
|
|
- 计算每条线段的单位方向向量
|
|
|
- lines: [N, 2, 2]
|
|
|
- 返回: [N, 2] 单位方向向量
|
|
|
- """
|
|
|
- vec = lines[:, 1] - lines[:, 0]
|
|
|
- return F.normalize(vec, dim=-1)
|
|
|
-
|
|
|
-def angle_loss_cosine(pred_dir, gt_dir):
|
|
|
- """
|
|
|
- 使用 cosine similarity 计算方向差异
|
|
|
- pred_dir: [N, 2]
|
|
|
- gt_dir: [N, 2]
|
|
|
- 返回: [N]
|
|
|
- """
|
|
|
- cos_sim = torch.sum(pred_dir * gt_dir, dim=-1).clamp(-1.0, 1.0)
|
|
|
- return 1.0 - cos_sim # 或者 torch.acos(cos_sim) / pi 也可
|
|
|
-
|
|
|
-
|
|
|
-def single_point_to_heatmap(keypoints, rois, heatmap_size):
|
|
|
- # type: (Tensor, Tensor, int) -> Tensor
|
|
|
- print(f'rois:{rois.shape}')
|
|
|
- print(f'heatmap_size:{heatmap_size}')
|
|
|
-
|
|
|
-
|
|
|
- print(f'keypoints.shape:{keypoints.shape}')
|
|
|
- # batch_size, num_keypoints, _ = keypoints.shape
|
|
|
-
|
|
|
- x = keypoints[..., 0].unsqueeze(1)
|
|
|
- y = keypoints[..., 1].unsqueeze(1)
|
|
|
-
|
|
|
-
|
|
|
- gs = generate_gaussian_heatmaps(x, y,num_points=1, heatmap_size=heatmap_size, sigma=1.0)
|
|
|
- # show_heatmap(gs[0],'target')
|
|
|
- all_roi_heatmap = []
|
|
|
- for roi, heatmap in zip(rois, gs):
|
|
|
- # show_heatmap(heatmap, 'target')
|
|
|
- # print(f'heatmap:{heatmap.shape}')
|
|
|
- heatmap = heatmap.unsqueeze(0)
|
|
|
- x1, y1, x2, y2 = map(int, roi)
|
|
|
- roi_heatmap = torch.zeros_like(heatmap)
|
|
|
- roi_heatmap[..., y1:y2 + 1, x1:x2 + 1] = heatmap[..., y1:y2 + 1, x1:x2 + 1]
|
|
|
- # show_heatmap(roi_heatmap[0],'roi_heatmap')
|
|
|
- all_roi_heatmap.append(roi_heatmap)
|
|
|
-
|
|
|
- all_roi_heatmap = torch.cat(all_roi_heatmap)
|
|
|
- print(f'all_roi_heatmap:{all_roi_heatmap.shape}')
|
|
|
-
|
|
|
- return all_roi_heatmap
|
|
|
-
|
|
|
-def line_points_to_heatmap(keypoints, rois, heatmap_size):
|
|
|
- # type: (Tensor, Tensor, int) -> Tensor
|
|
|
- print(f'rois:{rois.shape}')
|
|
|
- print(f'heatmap_size:{heatmap_size}')
|
|
|
-
|
|
|
-
|
|
|
- print(f'keypoints.shape:{keypoints.shape}')
|
|
|
- # batch_size, num_keypoints, _ = keypoints.shape
|
|
|
-
|
|
|
- x = keypoints[..., 0]
|
|
|
- y = keypoints[..., 1]
|
|
|
-
|
|
|
- gs = generate_gaussian_heatmaps(x, y, heatmap_size, 1.0)
|
|
|
- # show_heatmap(gs[0],'target')
|
|
|
- all_roi_heatmap = []
|
|
|
- for roi, heatmap in zip(rois, gs):
|
|
|
- # print(f'heatmap:{heatmap.shape}')
|
|
|
- heatmap = heatmap.unsqueeze(0)
|
|
|
- x1, y1, x2, y2 = map(int, roi)
|
|
|
- roi_heatmap = torch.zeros_like(heatmap)
|
|
|
- roi_heatmap[..., y1:y2 + 1, x1:x2 + 1] = heatmap[..., y1:y2 + 1, x1:x2 + 1]
|
|
|
- # show_heatmap(roi_heatmap,'roi_heatmap')
|
|
|
- all_roi_heatmap.append(roi_heatmap)
|
|
|
-
|
|
|
- all_roi_heatmap = torch.cat(all_roi_heatmap)
|
|
|
- print(f'all_roi_heatmap:{all_roi_heatmap.shape}')
|
|
|
-
|
|
|
- return all_roi_heatmap
|
|
|
-
|
|
|
-
|
|
|
-"""
|
|
|
-修改适配的原结构的点 转热图,适用于带roi_pool版本的
|
|
|
-"""
|
|
|
-
|
|
|
-
|
|
|
-def line_points_to_heatmap_(keypoints, rois, heatmap_size):
|
|
|
- # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
|
|
|
- print(f'rois:{rois.shape}')
|
|
|
- print(f'heatmap_size:{heatmap_size}')
|
|
|
- offset_x = rois[:, 0]
|
|
|
- offset_y = rois[:, 1]
|
|
|
- scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
|
|
|
- scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
|
|
|
-
|
|
|
- offset_x = offset_x[:, None]
|
|
|
- offset_y = offset_y[:, None]
|
|
|
- scale_x = scale_x[:, None]
|
|
|
- scale_y = scale_y[:, None]
|
|
|
-
|
|
|
- print(f'keypoints.shape:{keypoints.shape}')
|
|
|
- # batch_size, num_keypoints, _ = keypoints.shape
|
|
|
-
|
|
|
- x = keypoints[..., 0]
|
|
|
- y = keypoints[..., 1]
|
|
|
-
|
|
|
- # gs=generate_gaussian_heatmaps(x,y,512,1.0)
|
|
|
-
|
|
|
- # print(f'gs_heatmap shape:{gs.shape}')
|
|
|
- #
|
|
|
- # show_heatmap(gs[0],'target')
|
|
|
-
|
|
|
- x_boundary_inds = x == rois[:, 2][:, None]
|
|
|
- y_boundary_inds = y == rois[:, 3][:, None]
|
|
|
-
|
|
|
- x = (x - offset_x) * scale_x
|
|
|
- x = x.floor().long()
|
|
|
- y = (y - offset_y) * scale_y
|
|
|
- y = y.floor().long()
|
|
|
-
|
|
|
- x[x_boundary_inds] = heatmap_size - 1
|
|
|
- y[y_boundary_inds] = heatmap_size - 1
|
|
|
- # print(f'heatmaps x:{x}')
|
|
|
- # print(f'heatmaps y:{y}')
|
|
|
-
|
|
|
- valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
|
|
|
- vis = keypoints[..., 2] > 0
|
|
|
- valid = (valid_loc & vis).long()
|
|
|
-
|
|
|
- gs_heatmap = generate_gaussian_heatmaps(x, y, heatmap_size, 1.0)
|
|
|
-
|
|
|
- show_heatmap(gs_heatmap[0], 'feature')
|
|
|
-
|
|
|
- # print(f'gs_heatmap:{gs_heatmap.shape}')
|
|
|
- #
|
|
|
- # lin_ind = y * heatmap_size + x
|
|
|
- # print(f'lin_ind:{lin_ind.shape}')
|
|
|
- # heatmaps = lin_ind * valid
|
|
|
-
|
|
|
- return gs_heatmap
|
|
|
-
|
|
|
-
|
|
|
-def generate_gaussian_heatmaps(xs, ys, heatmap_size,num_points=2, sigma=2.0, device='cuda'):
|
|
|
- """
|
|
|
- 为一组点生成并合并高斯热图。
|
|
|
-
|
|
|
- Args:
|
|
|
- xs (Tensor): 形状为 (N, 2) 的所有点的 x 坐标
|
|
|
- ys (Tensor): 形状为 (N, 2) 的所有点的 y 坐标
|
|
|
- heatmap_size (int): 热图大小 H=W
|
|
|
- sigma (float): 高斯核标准差
|
|
|
- device (str): 设备类型 ('cpu' or 'cuda')
|
|
|
-
|
|
|
- Returns:
|
|
|
- Tensor: 形状为 (H, W) 的合并后的热图
|
|
|
- """
|
|
|
-
|
|
|
- assert xs.shape == ys.shape, "x and y must have the same shape"
|
|
|
- print(f'xs:{xs.shape}')
|
|
|
- N = xs.shape[0]
|
|
|
- print(f'N:{N},num_points:{num_points}')
|
|
|
-
|
|
|
- # 创建网格
|
|
|
- grid_y, grid_x = torch.meshgrid(
|
|
|
- torch.arange(heatmap_size, device=device),
|
|
|
- torch.arange(heatmap_size, device=device),
|
|
|
- indexing='ij'
|
|
|
- )
|
|
|
-
|
|
|
- # print(f'heatmap_size:{heatmap_size}')
|
|
|
- # 初始化输出热图
|
|
|
- combined_heatmap = torch.zeros((N, heatmap_size, heatmap_size), device=device)
|
|
|
-
|
|
|
- for i in range(N):
|
|
|
- heatmap= torch.zeros((heatmap_size, heatmap_size), device=device)
|
|
|
- for j in range(num_points):
|
|
|
- mu_x1 = xs[i, j].clamp(0, heatmap_size - 1).item()
|
|
|
- mu_y1 = ys[i, j].clamp(0, heatmap_size - 1).item()
|
|
|
- # print(f'mu_x1,mu_y1:{mu_x1},{mu_y1}')
|
|
|
-
|
|
|
- # 计算距离平方
|
|
|
- dist1 = (grid_x - mu_x1) ** 2 + (grid_y - mu_y1) ** 2
|
|
|
-
|
|
|
- # 计算高斯分布
|
|
|
- heatmap1 = torch.exp(-dist1 / (2 * sigma ** 2))
|
|
|
-
|
|
|
- heatmap+=heatmap1
|
|
|
-
|
|
|
-
|
|
|
- # mu_x2 = xs[i, 1].clamp(0, heatmap_size - 1).item()
|
|
|
- # mu_y2 = ys[i, 1].clamp(0, heatmap_size - 1).item()
|
|
|
- #
|
|
|
- # # 计算距离平方
|
|
|
- # dist2 = (grid_x - mu_x2) ** 2 + (grid_y - mu_y2) ** 2
|
|
|
- #
|
|
|
- # # 计算高斯分布
|
|
|
- # heatmap2 = torch.exp(-dist2 / (2 * sigma ** 2))
|
|
|
- #
|
|
|
- # heatmap = heatmap1 + heatmap2
|
|
|
-
|
|
|
- # 将当前热图累加到结果中
|
|
|
- combined_heatmap[i] = heatmap
|
|
|
-
|
|
|
- return combined_heatmap
|
|
|
-
|
|
|
-
|
|
|
-# 显示热图的函数
|
|
|
-def show_heatmap(heatmap, title="Heatmap"):
|
|
|
- """
|
|
|
- 使用 matplotlib 显示热图。
|
|
|
-
|
|
|
- Args:
|
|
|
- heatmap (Tensor): 要显示的热图张量
|
|
|
- title (str): 图表标题
|
|
|
- """
|
|
|
- # 如果在 GPU 上,首先将其移动到 CPU 并转换为 numpy 数组
|
|
|
- if heatmap.is_cuda:
|
|
|
- heatmap = heatmap.cpu().numpy()
|
|
|
- else:
|
|
|
- heatmap = heatmap.numpy()
|
|
|
-
|
|
|
- plt.imshow(heatmap, cmap='hot', interpolation='nearest')
|
|
|
- plt.colorbar()
|
|
|
- plt.title(title)
|
|
|
- plt.show()
|
|
|
|
|
|
|
|
|
def keypoints_to_heatmap(keypoints, rois, heatmap_size):
|
|
|
@@ -564,340 +303,6 @@ def heatmaps_to_keypoints(maps, rois):
|
|
|
return xy_preds.permute(0, 2, 1), end_scores
|
|
|
|
|
|
|
|
|
-def non_maximum_suppression(a):
|
|
|
- ap = F.max_pool2d(a, 3, stride=1, padding=1)
|
|
|
- mask = (a == ap).float().clamp(min=0.0)
|
|
|
- return a * mask
|
|
|
-
|
|
|
-def heatmaps_to_points(maps, rois):
|
|
|
-
|
|
|
-
|
|
|
- point_preds = torch.zeros((len(rois), 2), dtype=torch.float32, device=maps.device)
|
|
|
- point_end_scores = torch.zeros((len(rois), 1), dtype=torch.float32, device=maps.device)
|
|
|
-
|
|
|
- print(f'heatmaps_to_lines:{maps.shape}')
|
|
|
- point_maps=maps[:,0]
|
|
|
- print(f'point_map:{point_maps.shape}')
|
|
|
- for i in range(len(rois)):
|
|
|
-
|
|
|
- point_roi_map = point_maps[i].unsqueeze(0)
|
|
|
- print(f'point_roi_map:{point_roi_map.shape}')
|
|
|
- # roi_map_probs = scores_to_probs(roi_map.copy())
|
|
|
- w = point_roi_map.shape[2]
|
|
|
- flatten_point_roi_map = non_maximum_suppression(point_roi_map).reshape(1, -1)
|
|
|
- point_score, point_index = torch.topk(flatten_point_roi_map, k=1)
|
|
|
- print(f'point index:{point_index}')
|
|
|
- # pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
|
|
|
-
|
|
|
- point_x =point_index % w
|
|
|
- point_y = torch.div(point_index - point_x, w, rounding_mode="floor")
|
|
|
- point_preds[i, 0,] = point_x
|
|
|
- point_preds[i, 1,] = point_y
|
|
|
-
|
|
|
- point_end_scores[i, :] = point_roi_map[torch.arange(1, device=point_roi_map.device), point_y, point_x]
|
|
|
-
|
|
|
-
|
|
|
- return point_preds,point_end_scores
|
|
|
-
|
|
|
-def heatmaps_to_lines(maps, rois):
|
|
|
- line_preds = torch.zeros((len(rois), 3, 2), dtype=torch.float32, device=maps.device)
|
|
|
- line_end_scores = torch.zeros((len(rois), 2), dtype=torch.float32, device=maps.device)
|
|
|
-
|
|
|
- line_maps=maps[:,1]
|
|
|
-
|
|
|
-
|
|
|
- for i in range(len(rois)):
|
|
|
- line_roi_map = line_maps[i].unsqueeze(0)
|
|
|
-
|
|
|
- print(f'line_roi_map:{line_roi_map.shape}')
|
|
|
- # roi_map_probs = scores_to_probs(roi_map.copy())
|
|
|
- w = line_roi_map.shape[1]
|
|
|
- flatten_line_roi_map = non_maximum_suppression(line_roi_map).reshape(1, -1)
|
|
|
- line_score, line_index = torch.topk(flatten_line_roi_map, k=2)
|
|
|
- print(f'line index:{line_index}')
|
|
|
- # pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
|
|
|
- pos = line_index
|
|
|
- line_x = pos % w
|
|
|
- line_y = torch.div(pos - line_x, w, rounding_mode="floor")
|
|
|
- line_preds[i, 0, :] = line_x
|
|
|
- line_preds[i, 1, :] = line_y
|
|
|
- line_preds[i, 2, :] = 1
|
|
|
- line_end_scores[i, :] = line_roi_map[torch.arange(1, device=line_roi_map.device), line_y, line_x]
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- return line_preds.permute(0, 2, 1), line_end_scores
|
|
|
-
|
|
|
-
|
|
|
-def features_align(features, proposals, img_size):
|
|
|
- print(f'lines_features_align features:{features.shape},proposals:{len(proposals)}')
|
|
|
-
|
|
|
- align_feat_list = []
|
|
|
-
|
|
|
- for feat, proposals_per_img in zip(features, proposals):
|
|
|
- print(f'lines_features_align feat:{feat.shape}, proposals_per_img:{proposals_per_img.shape}')
|
|
|
- if proposals_per_img.shape[0]>0:
|
|
|
- feat = feat.unsqueeze(0)
|
|
|
- for proposal in proposals_per_img:
|
|
|
- align_feat = torch.zeros_like(feat)
|
|
|
- # print(f'align_feat:{align_feat.shape}')
|
|
|
- x1, y1, x2, y2 = map(lambda v: int(v.item()), proposal)
|
|
|
- # 将每个proposal框内的部分赋值到align_feats对应位置
|
|
|
- align_feat[:, :, y1:y2 + 1, x1:x2 + 1] = feat[:, :, y1:y2 + 1, x1:x2 + 1]
|
|
|
- align_feat_list.append(align_feat)
|
|
|
-
|
|
|
- # print(f'align_feat_list:{align_feat_list}')
|
|
|
- if len(align_feat_list) > 0:
|
|
|
- feats_tensor = torch.cat(align_feat_list)
|
|
|
-
|
|
|
- print(f'align features :{feats_tensor.shape}')
|
|
|
- else:
|
|
|
- feats_tensor = None
|
|
|
-
|
|
|
- return feats_tensor
|
|
|
-
|
|
|
-
|
|
|
-def lines_point_pair_loss(line_logits, proposals, gt_lines, line_matched_idxs):
|
|
|
- # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
|
|
|
- N, K, H, W = line_logits.shape
|
|
|
- len_proposals = len(proposals)
|
|
|
- print(f'lines_point_pair_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals}')
|
|
|
- if H != W:
|
|
|
- raise ValueError(
|
|
|
- f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
|
|
|
- )
|
|
|
- discretization_size = H
|
|
|
- heatmaps = []
|
|
|
- gs_heatmaps = []
|
|
|
- valid = []
|
|
|
- for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_lines, line_matched_idxs):
|
|
|
- print(f'line_proposals_per_image:{proposals_per_image.shape}')
|
|
|
- print(f'gt_lines:{gt_lines}')
|
|
|
- kp = gt_kp_in_image[midx]
|
|
|
- gs_heatmaps_per_img = line_points_to_heatmap(kp, proposals_per_image, discretization_size)
|
|
|
- gs_heatmaps.append(gs_heatmaps_per_img)
|
|
|
- # print(f'heatmaps_per_image:{heatmaps_per_image.shape}')
|
|
|
-
|
|
|
- # heatmaps.append(heatmaps_per_image.view(-1))
|
|
|
-
|
|
|
- # valid.append(valid_per_image.view(-1))
|
|
|
-
|
|
|
- # line_targets = torch.cat(heatmaps, dim=0)
|
|
|
- gs_heatmaps = torch.cat(gs_heatmaps, dim=0)
|
|
|
- print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{line_logits.squeeze(1).shape}')
|
|
|
- # print(f'line_targets:{line_targets.shape},{line_targets}')
|
|
|
-
|
|
|
- # valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
|
|
|
- # valid = torch.where(valid)[0]
|
|
|
-
|
|
|
- # print(f' line_targets[valid]:{line_targets[valid]}')
|
|
|
-
|
|
|
- # torch.mean (in binary_cross_entropy_with_logits) doesn't
|
|
|
- # accept empty tensors, so handle it sepaartely
|
|
|
- # if line_targets.numel() == 0 or len(valid) == 0:
|
|
|
- # return line_logits.sum() * 0
|
|
|
-
|
|
|
- # line_logits = line_logits.view(N * K, H * W)
|
|
|
- # print(f'line_logits[valid]:{line_logits[valid].shape}')
|
|
|
- line_logits = line_logits.squeeze(1)
|
|
|
-
|
|
|
- # line_loss = F.cross_entropy(line_logits[valid], line_targets[valid])
|
|
|
- line_loss = F.cross_entropy(line_logits, gs_heatmaps)
|
|
|
-
|
|
|
- return line_loss
|
|
|
-
|
|
|
-
|
|
|
-def compute_point_loss(line_logits, proposals, gt_points, point_matched_idxs):
|
|
|
- # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
|
|
|
- N, K, H, W = line_logits.shape
|
|
|
- len_proposals = len(proposals)
|
|
|
-
|
|
|
- empty_count = 0
|
|
|
- non_empty_count = 0
|
|
|
-
|
|
|
- for prop in proposals:
|
|
|
- if prop.shape[0] == 0:
|
|
|
- empty_count += 1
|
|
|
- else:
|
|
|
- non_empty_count += 1
|
|
|
-
|
|
|
- print(f"Empty proposals count: {empty_count}")
|
|
|
- print(f"Non-empty proposals count: {non_empty_count}")
|
|
|
-
|
|
|
- print(f'starte to compute_point_loss')
|
|
|
- print(f'compute_point_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals}')
|
|
|
- if H != W:
|
|
|
- raise ValueError(
|
|
|
- f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
|
|
|
- )
|
|
|
- discretization_size = H
|
|
|
-
|
|
|
- gs_heatmaps = []
|
|
|
- # print(f'point_matched_idxs:{point_matched_idxs}')
|
|
|
- for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_points, point_matched_idxs):
|
|
|
- print(f'proposals_per_image:{proposals_per_image.shape}')
|
|
|
- kp = gt_kp_in_image[midx]
|
|
|
- # print(f'gt_kp_in_image:{gt_kp_in_image}')
|
|
|
- gs_heatmaps_per_img = single_point_to_heatmap(kp, proposals_per_image, discretization_size)
|
|
|
- gs_heatmaps.append(gs_heatmaps_per_img)
|
|
|
-
|
|
|
- gs_heatmaps = torch.cat(gs_heatmaps, dim=0)
|
|
|
- print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{line_logits.squeeze(1).shape}')
|
|
|
-
|
|
|
- line_logits = line_logits[:,0]
|
|
|
- print(f'single_point_logits:{line_logits.shape}')
|
|
|
-
|
|
|
- line_loss = F.cross_entropy(line_logits, gs_heatmaps)
|
|
|
-
|
|
|
- return line_loss
|
|
|
-
|
|
|
-def lines_to_boxes(lines, img_size=511):
|
|
|
- """
|
|
|
- 输入:
|
|
|
- lines: Tensor of shape (N, 2, 2),表示 N 条线段,每个线段有两个端点 (x, y)
|
|
|
- img_size: int,图像尺寸,用于 clamp 边界
|
|
|
-
|
|
|
- 输出:
|
|
|
- boxes: Tensor of shape (N, 4),表示 N 个包围盒 [x_min, y_min, x_max, y_max]
|
|
|
- """
|
|
|
- # 提取所有线段的两个端点
|
|
|
- p1 = lines[:, 0] # (N, 2)
|
|
|
- p2 = lines[:, 1] # (N, 2)
|
|
|
-
|
|
|
- # 每条线段的 x 和 y 坐标
|
|
|
- x_coords = torch.stack([p1[:, 0], p2[:, 0]], dim=1) # (N, 2)
|
|
|
- y_coords = torch.stack([p1[:, 1], p2[:, 1]], dim=1) # (N, 2)
|
|
|
-
|
|
|
- # 计算包围盒边界
|
|
|
- x_min = x_coords.min(dim=1).values
|
|
|
- y_min = y_coords.min(dim=1).values
|
|
|
- x_max = x_coords.max(dim=1).values
|
|
|
- y_max = y_coords.max(dim=1).values
|
|
|
-
|
|
|
- # 扩展边界并限制在图像范围内
|
|
|
- x_min = (x_min - 1).clamp(min=0, max=img_size)
|
|
|
- y_min = (y_min - 1).clamp(min=0, max=img_size)
|
|
|
- x_max = (x_max + 1).clamp(min=0, max=img_size)
|
|
|
- y_max = (y_max + 1).clamp(min=0, max=img_size)
|
|
|
-
|
|
|
- # 合成包围盒
|
|
|
- boxes = torch.stack([x_min, y_min, x_max, y_max], dim=1) # (N, 4)
|
|
|
- return boxes
|
|
|
-
|
|
|
-
|
|
|
-def box_iou_pairwise(box1, box2):
|
|
|
- """
|
|
|
- 输入:
|
|
|
- box1: shape (N, 4)
|
|
|
- box2: shape (M, 4)
|
|
|
- 输出:
|
|
|
- ious: shape (min(N, M), ), 只计算 i = j 的配对
|
|
|
- """
|
|
|
- N = min(len(box1), len(box2))
|
|
|
- lt = torch.max(box1[:N, :2], box2[:N, :2]) # å·¦ä¸è§
|
|
|
- rb = torch.min(box1[:N, 2:], box2[:N, 2:]) # å³ä¸è§
|
|
|
-
|
|
|
- wh = (rb - lt).clamp(min=0) # 宽é«
|
|
|
- inter_area = wh[:, 0] * wh[:, 1] # 交éé¢ç§¯
|
|
|
-
|
|
|
- area1 = (box1[:N, 2] - box1[:N, 0]) * (box1[:N, 3] - box1[:N, 1])
|
|
|
- area2 = (box2[:N, 2] - box2[:N, 0]) * (box2[:N, 3] - box2[:N, 1])
|
|
|
-
|
|
|
- union_area = area1 + area2 - inter_area
|
|
|
- ious = inter_area / (union_area + 1e-6)
|
|
|
-
|
|
|
- return ious
|
|
|
-
|
|
|
-
|
|
|
-def line_iou_loss(x, boxes, gt_lines, matched_idx, img_size=511, alpha=1.0, beta=1.0, gamma=1.0):
|
|
|
- """
|
|
|
- Args:
|
|
|
- x: [N,1,H,W] 热力图
|
|
|
- boxes: [N,4] 框坐标
|
|
|
- gt_lines: [N,2,3] GT线段(含可见性)
|
|
|
- matched_idx: 匹配 index
|
|
|
- img_size: 图像尺寸
|
|
|
- alpha: IoU 损失权重
|
|
|
- beta: 长度损失权重
|
|
|
- gamma: 方向角度损失权重
|
|
|
- """
|
|
|
- losses = []
|
|
|
- boxes_per_image = [box.size(0) for box in boxes]
|
|
|
- x2 = x.split(boxes_per_image, dim=0)
|
|
|
-
|
|
|
- for xx, bb, gt_line, mid in zip(x2, boxes, gt_lines, matched_idx):
|
|
|
- p_prob, _ = heatmaps_to_lines(xx, bb)
|
|
|
- pred_lines = p_prob
|
|
|
- gt_line_points = gt_line[mid]
|
|
|
-
|
|
|
- if len(pred_lines) == 0 or len(gt_line_points) == 0:
|
|
|
- continue
|
|
|
-
|
|
|
- # IoU 损失
|
|
|
- pred_boxes = lines_to_boxes(pred_lines, img_size)
|
|
|
- gt_boxes = lines_to_boxes(gt_line_points, img_size)
|
|
|
- ious = box_iou_pairwise(pred_boxes, gt_boxes)
|
|
|
- iou_loss = 1.0 - ious # [N]
|
|
|
-
|
|
|
- # 长度损失
|
|
|
- pred_len = line_length(pred_lines)
|
|
|
- gt_len = line_length(gt_line_points)
|
|
|
- length_diff = F.l1_loss(pred_len, gt_len, reduction='none') # [N]
|
|
|
-
|
|
|
- # 方向角度损失
|
|
|
- pred_dir = line_direction(pred_lines)
|
|
|
- gt_dir = line_direction(gt_line_points)
|
|
|
- ang_loss = angle_loss_cosine(pred_dir, gt_dir) # [N]
|
|
|
-
|
|
|
- # 归一化每一项损失
|
|
|
- norm_iou = normalize_tensor(iou_loss)
|
|
|
- norm_len = normalize_tensor(length_diff)
|
|
|
- norm_ang = normalize_tensor(ang_loss)
|
|
|
-
|
|
|
- total = alpha * norm_iou + beta * norm_len + gamma * norm_ang
|
|
|
- losses.append(total)
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- if not losses:
|
|
|
- return None
|
|
|
-
|
|
|
- return torch.mean(torch.cat(losses))
|
|
|
-
|
|
|
-
|
|
|
-def point_inference(x, point_boxes):
|
|
|
- # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
|
|
|
-
|
|
|
- points_probs = []
|
|
|
- points_scores = []
|
|
|
-
|
|
|
- boxes_per_image = [box.size(0) for box in point_boxes]
|
|
|
- x2 = x.split(boxes_per_image, dim=0)
|
|
|
-
|
|
|
- for xx, bb in zip(x2, point_boxes):
|
|
|
- point_prob,point_scores = heatmaps_to_points(xx, bb)
|
|
|
-
|
|
|
- points_probs.append(point_prob.unsqueeze(1))
|
|
|
- points_scores.append(point_scores)
|
|
|
-
|
|
|
- return points_probs,points_scores
|
|
|
-
|
|
|
-def line_inference(x, line_boxes):
|
|
|
- # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
|
|
|
- lines_probs = []
|
|
|
- lines_scores = []
|
|
|
-
|
|
|
- boxes_per_image = [box.size(0) for box in line_boxes]
|
|
|
- x2 = x.split(boxes_per_image, dim=0)
|
|
|
-
|
|
|
- for xx, bb in zip(x2, line_boxes):
|
|
|
- line_prob, line_scores, = heatmaps_to_lines(xx, bb)
|
|
|
- lines_probs.append(line_prob)
|
|
|
- lines_scores.append(line_scores)
|
|
|
-
|
|
|
- return lines_probs, lines_scores
|
|
|
-
|
|
|
|
|
|
def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs):
|
|
|
# type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
|
|
|
@@ -1528,42 +933,14 @@ class RoIHeads(nn.Module):
|
|
|
point_proposals_tensor=torch.cat(point_proposals)
|
|
|
print(f'point_proposals_tensor:{point_proposals_tensor.shape}')
|
|
|
|
|
|
-
|
|
|
- # line_features = lines_features_align(line_features, filtered_proposals, image_shapes)
|
|
|
-
|
|
|
line_features=None
|
|
|
- # line_features = features_align(cs_features, line_proposals, image_shapes)
|
|
|
- # if line_features is not None:
|
|
|
- # print(f'line_features:{line_features.shape}')
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- # if line_features is not None and point_features is not None:
|
|
|
- # combine_features = torch.cat((point_features, line_features), dim=0)
|
|
|
- # elif line_features is not None:
|
|
|
- # combine_features =line_features
|
|
|
- # elif point_features is not None:
|
|
|
- # combine_features =point_features
|
|
|
|
|
|
- # combine_features = point_features
|
|
|
- # print(f'line_features from features_align:{combine_features.shape}')
|
|
|
+ feature_logits = self.line_predictor(cs_features)
|
|
|
+ print(f'feature_logits from line_predictor:{feature_logits.shape}')
|
|
|
|
|
|
- # combine_features = self.line_head(cs_features)
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- # if point_features is not None:
|
|
|
- # print(f'point_features:{point_features.shape}')
|
|
|
-
|
|
|
- #(N,1,512,512)
|
|
|
- # print(f'combine_features from line_head:{combine_features.shape}')
|
|
|
-
|
|
|
- combine_features = self.line_predictor(cs_features )
|
|
|
- print(f'combine_features from line_predictor:{combine_features.shape}')
|
|
|
-
|
|
|
- point_features = features_align(combine_features, point_proposals, image_shapes)
|
|
|
- print(f'point_features from features_align:{point_features.shape}')
|
|
|
- combine_features=point_features
|
|
|
+ point_features = features_align(feature_logits, point_proposals, image_shapes)
|
|
|
+ print(f'feature_logits features_align:{point_features.shape}')
|
|
|
+ feature_logits=point_features
|
|
|
|
|
|
# line_logits = combine_features
|
|
|
# print(f'line_logits:{line_logits.shape}')
|
|
|
@@ -1581,10 +958,6 @@ class RoIHeads(nn.Module):
|
|
|
print(f'gt_lines:{gt_lines[0].shape}')
|
|
|
h, w = targets[0]["img_size"]
|
|
|
img_size = h
|
|
|
- # rcnn_loss_line = lines_point_pair_loss(
|
|
|
- # line_logits, line_proposals, gt_lines, pos_matched_idxs
|
|
|
- # )
|
|
|
- # iou_loss = line_iou_loss(line_logits, line_proposals, gt_lines, pos_matched_idxs, img_size)
|
|
|
|
|
|
gt_lines_tensor=torch.cat(gt_lines)
|
|
|
gt_points_tensor = torch.cat(gt_points)
|
|
|
@@ -1592,13 +965,13 @@ class RoIHeads(nn.Module):
|
|
|
print(f'gt_points_tensor:{gt_points_tensor.shape}')
|
|
|
if gt_lines_tensor.shape[0]>0 and line_features is not None:
|
|
|
loss_line = lines_point_pair_loss(
|
|
|
- combine_features, line_proposals, gt_lines, line_pos_matched_idxs
|
|
|
+ feature_logits, line_proposals, gt_lines, line_pos_matched_idxs
|
|
|
)
|
|
|
- loss_line_iou = line_iou_loss(combine_features, line_proposals, gt_lines, line_pos_matched_idxs, img_size)
|
|
|
+ loss_line_iou = line_iou_loss(feature_logits, line_proposals, gt_lines, line_pos_matched_idxs, img_size)
|
|
|
|
|
|
if gt_points_tensor.shape[0]>0 and point_features is not None:
|
|
|
loss_point = compute_point_loss(
|
|
|
- combine_features, point_proposals, gt_points, point_pos_matched_idxs
|
|
|
+ feature_logits, point_proposals, gt_points, point_pos_matched_idxs
|
|
|
)
|
|
|
|
|
|
if not loss_line:
|
|
|
@@ -1625,14 +998,14 @@ class RoIHeads(nn.Module):
|
|
|
|
|
|
if gt_lines_tensor.shape[0] > 0 and line_features is not None:
|
|
|
loss_line = lines_point_pair_loss(
|
|
|
- combine_features, line_proposals, gt_lines, line_pos_matched_idxs
|
|
|
+ feature_logits, line_proposals, gt_lines, line_pos_matched_idxs
|
|
|
)
|
|
|
- loss_line_iou = line_iou_loss(combine_features, line_proposals, gt_lines, line_pos_matched_idxs,
|
|
|
+ loss_line_iou = line_iou_loss(feature_logits, line_proposals, gt_lines, line_pos_matched_idxs,
|
|
|
img_size)
|
|
|
|
|
|
if gt_points_tensor.shape[0] > 0 and point_features is not None:
|
|
|
loss_point = compute_point_loss(
|
|
|
- combine_features, point_proposals, gt_points, point_pos_matched_idxs
|
|
|
+ feature_logits, point_proposals, gt_points, point_pos_matched_idxs
|
|
|
)
|
|
|
|
|
|
if not loss_line :
|
|
|
@@ -1651,7 +1024,7 @@ class RoIHeads(nn.Module):
|
|
|
|
|
|
|
|
|
else:
|
|
|
- if combine_features is None or line_proposals is None:
|
|
|
+ if feature_logits is None or line_proposals is None:
|
|
|
raise ValueError(
|
|
|
"both keypoint_logits and keypoint_proposals should not be None when not in training mode"
|
|
|
)
|
|
|
@@ -1661,8 +1034,9 @@ class RoIHeads(nn.Module):
|
|
|
# for keypoint_prob, kps, r in zip(lines_probs, lines_scores, result):
|
|
|
# r["lines"] = keypoint_prob
|
|
|
# r["liness_scores"] = kps
|
|
|
+
|
|
|
if point_features is not None:
|
|
|
- point_probs, points_scores=point_inference(combine_features, point_proposals,)
|
|
|
+ point_probs, points_scores=point_inference(feature_logits, point_proposals, )
|
|
|
for points, ps, r in zip(point_probs,points_scores, result):
|
|
|
print(f'points_prob :{points.shape}')
|
|
|
|