|
|
@@ -2,6 +2,7 @@ import os
|
|
|
import time
|
|
|
from datetime import datetime
|
|
|
|
|
|
+import cv2
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
from matplotlib import pyplot as plt
|
|
|
@@ -222,6 +223,29 @@ class Trainer(BaseTrainer):
|
|
|
|
|
|
self.writer.add_image("z-output_line", line_image.permute(1, 2, 0), epoch, dataformats="HWC")
|
|
|
|
|
|
+ if 'arcs' in result:
|
|
|
+ arcs = result['arcs']
|
|
|
+ img_np = img.numpy()
|
|
|
+ img_np=img_np.transpose(1,2,0)
|
|
|
+ # cv2.imshow('original', img_np*255)
|
|
|
+ # cv2.waitKey(100000)
|
|
|
+ for arc in arcs:
|
|
|
+ print(f'arc len:{len(arc)}')
|
|
|
+ for i in range(1, len(arc)):
|
|
|
+ pt1 = (int(arc[i - 1][0]), int(arc[i - 1][1]))
|
|
|
+ pt2 = (int(arc[i][0]), int(arc[i][1]))
|
|
|
+ cv2.line(img_np, pt1, pt2, color=(255, 0, 0), thickness=2)
|
|
|
+
|
|
|
+ img_rgb = cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ img_tensor =torch.tensor(img_rgb)
|
|
|
+ img_tensor = np.transpose(img_tensor)
|
|
|
+ self.writer.add_image('z-out-arc', img_tensor, global_step=epoch)
|
|
|
+
|
|
|
+ # cv2.imshow('arc', img_rgb)
|
|
|
+ # cv2.waitKey(1000000)
|
|
|
|
|
|
|
|
|
|