|
|
@@ -178,7 +178,7 @@ class LineDetect(BaseDetectionNet):
|
|
|
|
|
|
if line_predictor is None and detect_line:
|
|
|
# keypoint_dim_reduced = 512 # == keypoint_layers[-1]
|
|
|
- line_predictor = LinePredictor(in_channels=128)
|
|
|
+ line_predictor = LinePredictor(in_channels=256)
|
|
|
|
|
|
if point_head is None and detect_point:
|
|
|
layers = tuple(num_points for _ in range(8))
|
|
|
@@ -322,7 +322,7 @@ def linedetect_newresnet18fpn(
|
|
|
if num_points is None:
|
|
|
num_points = 3
|
|
|
|
|
|
-
|
|
|
+ size=1024
|
|
|
backbone =resnet18fpn()
|
|
|
featmap_names=['0', '1', '2', '3','4','pool']
|
|
|
# print(f'featmap_names:{featmap_names}')
|
|
|
@@ -340,7 +340,7 @@ def linedetect_newresnet18fpn(
|
|
|
|
|
|
anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
|
|
|
|
|
|
- model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
|
|
|
+ model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
|
|
|
|
|
|
return model
|
|
|
|
|
|
@@ -359,8 +359,8 @@ def linedetect_newresnet50fpn(
|
|
|
if num_points is None:
|
|
|
num_points = 3
|
|
|
|
|
|
-
|
|
|
- backbone =resnet50fpn()
|
|
|
+ size=768
|
|
|
+ backbone =resnet50fpn(out_channels=256)
|
|
|
featmap_names=['0', '1', '2', '3','4','pool']
|
|
|
# print(f'featmap_names:{featmap_names}')
|
|
|
roi_pooler = MultiScaleRoIAlign(
|
|
|
@@ -376,7 +376,7 @@ def linedetect_newresnet50fpn(
|
|
|
|
|
|
anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
|
|
|
|
|
|
- model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
|
|
|
+ model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
@@ -398,7 +398,7 @@ def linedetect_newresnet101fpn(
|
|
|
num_points = 3
|
|
|
|
|
|
|
|
|
- backbone =resnet101fpn()
|
|
|
+ backbone =resnet101fpn(out_channels=256)
|
|
|
featmap_names=['0', '1', '2', '3','4','pool']
|
|
|
# print(f'featmap_names:{featmap_names}')
|
|
|
roi_pooler = MultiScaleRoIAlign(
|
|
|
@@ -432,7 +432,7 @@ def linedetect_maxvitfpn(
|
|
|
if num_points is None:
|
|
|
num_points = 3
|
|
|
|
|
|
- size=224*2
|
|
|
+ size=224*3
|
|
|
|
|
|
maxvit = MaxVitBackbone(input_size=(size,size))
|
|
|
# print(maxvit.named_children())
|
|
|
@@ -547,9 +547,9 @@ def linedetect_resnet18_fpn(
|
|
|
num_classes = 3
|
|
|
if num_points is None:
|
|
|
num_points = 3
|
|
|
-
|
|
|
+ size=1024
|
|
|
backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
|
|
|
- model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
|
|
|
+ model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
|
|
|
|
|
|
return model
|
|
|
|