|
@@ -0,0 +1,942 @@
|
|
|
|
|
+import math
|
|
|
|
|
+from collections import OrderedDict
|
|
|
|
|
+from functools import partial
|
|
|
|
|
+from typing import Any, Callable, List, Optional, Sequence, Tuple
|
|
|
|
|
+
|
|
|
|
|
+import numpy as np
|
|
|
|
|
+import torch
|
|
|
|
|
+import torch.nn.functional as F
|
|
|
|
|
+from torch import nn, Tensor
|
|
|
|
|
+from torchvision.models._api import register_model, Weights, WeightsEnum
|
|
|
|
|
+from torchvision.models._meta import _IMAGENET_CATEGORIES
|
|
|
|
|
+from torchvision.models._utils import _ovewrite_named_param, handle_legacy_interface
|
|
|
|
|
+from torchvision.ops.misc import Conv2dNormActivation, SqueezeExcitation
|
|
|
|
|
+from torchvision.ops.stochastic_depth import StochasticDepth
|
|
|
|
|
+from torchvision.transforms._presets import ImageClassification, InterpolationMode
|
|
|
|
|
+from torchvision.utils import _log_api_usage_once
|
|
|
|
|
+
|
|
|
|
|
+__all__ = [
|
|
|
|
|
+ "MaxVit",
|
|
|
|
|
+ "MaxVit_T_Weights",
|
|
|
|
|
+ "maxvit_t",
|
|
|
|
|
+]
|
|
|
|
|
+
|
|
|
|
|
+from libs.vision_libs.models.detection.backbone_utils import BackboneWithFPN
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def _get_conv_output_shape(input_size: Tuple[int, int], kernel_size: int, stride: int, padding: int) -> Tuple[int, int]:
|
|
|
|
|
+ return (
|
|
|
|
|
+ (input_size[0] - kernel_size + 2 * padding) // stride + 1,
|
|
|
|
|
+ (input_size[1] - kernel_size + 2 * padding) // stride + 1,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def _make_block_input_shapes(input_size: Tuple[int, int], n_blocks: int) -> List[Tuple[int, int]]:
|
|
|
|
|
+ """Util function to check that the input size is correct for a MaxVit configuration."""
|
|
|
|
|
+ shapes = []
|
|
|
|
|
+ block_input_shape = _get_conv_output_shape(input_size, 3, 2, 1)
|
|
|
|
|
+ for _ in range(n_blocks):
|
|
|
|
|
+ block_input_shape = _get_conv_output_shape(block_input_shape, 3, 2, 1)
|
|
|
|
|
+ shapes.append(block_input_shape)
|
|
|
|
|
+ return shapes
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def _get_relative_position_index(height: int, width: int) -> torch.Tensor:
|
|
|
|
|
+ coords = torch.stack(torch.meshgrid([torch.arange(height), torch.arange(width)]))
|
|
|
|
|
+ coords_flat = torch.flatten(coords, 1)
|
|
|
|
|
+ relative_coords = coords_flat[:, :, None] - coords_flat[:, None, :]
|
|
|
|
|
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
|
|
|
|
+ relative_coords[:, :, 0] += height - 1
|
|
|
|
|
+ relative_coords[:, :, 1] += width - 1
|
|
|
|
|
+ relative_coords[:, :, 0] *= 2 * width - 1
|
|
|
|
|
+ return relative_coords.sum(-1)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class MBConv(nn.Module):
|
|
|
|
|
+ """MBConv: Mobile Inverted Residual Bottleneck.
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ in_channels (int): Number of input channels.
|
|
|
|
|
+ out_channels (int): Number of output channels.
|
|
|
|
|
+ expansion_ratio (float): Expansion ratio in the bottleneck.
|
|
|
|
|
+ squeeze_ratio (float): Squeeze ratio in the SE Layer.
|
|
|
|
|
+ stride (int): Stride of the depthwise convolution.
|
|
|
|
|
+ activation_layer (Callable[..., nn.Module]): Activation function.
|
|
|
|
|
+ norm_layer (Callable[..., nn.Module]): Normalization function.
|
|
|
|
|
+ p_stochastic_dropout (float): Probability of stochastic depth.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ in_channels: int,
|
|
|
|
|
+ out_channels: int,
|
|
|
|
|
+ expansion_ratio: float,
|
|
|
|
|
+ squeeze_ratio: float,
|
|
|
|
|
+ stride: int,
|
|
|
|
|
+ activation_layer: Callable[..., nn.Module],
|
|
|
|
|
+ norm_layer: Callable[..., nn.Module],
|
|
|
|
|
+ p_stochastic_dropout: float = 0.0,
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+
|
|
|
|
|
+ proj: Sequence[nn.Module]
|
|
|
|
|
+ self.proj: nn.Module
|
|
|
|
|
+
|
|
|
|
|
+ should_proj = stride != 1 or in_channels != out_channels
|
|
|
|
|
+ if should_proj:
|
|
|
|
|
+ proj = [nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=True)]
|
|
|
|
|
+ if stride == 2:
|
|
|
|
|
+ proj = [nn.AvgPool2d(kernel_size=3, stride=stride, padding=1)] + proj # type: ignore
|
|
|
|
|
+ self.proj = nn.Sequential(*proj)
|
|
|
|
|
+ else:
|
|
|
|
|
+ self.proj = nn.Identity() # type: ignore
|
|
|
|
|
+
|
|
|
|
|
+ mid_channels = int(out_channels * expansion_ratio)
|
|
|
|
|
+ sqz_channels = int(out_channels * squeeze_ratio)
|
|
|
|
|
+
|
|
|
|
|
+ if p_stochastic_dropout:
|
|
|
|
|
+ self.stochastic_depth = StochasticDepth(p_stochastic_dropout, mode="row") # type: ignore
|
|
|
|
|
+ else:
|
|
|
|
|
+ self.stochastic_depth = nn.Identity() # type: ignore
|
|
|
|
|
+
|
|
|
|
|
+ _layers = OrderedDict()
|
|
|
|
|
+ _layers["pre_norm"] = norm_layer(in_channels)
|
|
|
|
|
+ _layers["conv_a"] = Conv2dNormActivation(
|
|
|
|
|
+ in_channels,
|
|
|
|
|
+ mid_channels,
|
|
|
|
|
+ kernel_size=1,
|
|
|
|
|
+ stride=1,
|
|
|
|
|
+ padding=0,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ norm_layer=norm_layer,
|
|
|
|
|
+ inplace=None,
|
|
|
|
|
+ )
|
|
|
|
|
+ _layers["conv_b"] = Conv2dNormActivation(
|
|
|
|
|
+ mid_channels,
|
|
|
|
|
+ mid_channels,
|
|
|
|
|
+ kernel_size=3,
|
|
|
|
|
+ stride=stride,
|
|
|
|
|
+ padding=1,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ norm_layer=norm_layer,
|
|
|
|
|
+ groups=mid_channels,
|
|
|
|
|
+ inplace=None,
|
|
|
|
|
+ )
|
|
|
|
|
+ _layers["squeeze_excitation"] = SqueezeExcitation(mid_channels, sqz_channels, activation=nn.SiLU)
|
|
|
|
|
+ _layers["conv_c"] = nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, bias=True)
|
|
|
|
|
+
|
|
|
|
|
+ self.layers = nn.Sequential(_layers)
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor) -> Tensor:
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ x (Tensor): Input tensor with expected layout of [B, C, H, W].
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ Tensor: Output tensor with expected layout of [B, C, H / stride, W / stride].
|
|
|
|
|
+ """
|
|
|
|
|
+ res = self.proj(x)
|
|
|
|
|
+ x = self.stochastic_depth(self.layers(x))
|
|
|
|
|
+ return res + x
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class RelativePositionalMultiHeadAttention(nn.Module):
|
|
|
|
|
+ """Relative Positional Multi-Head Attention.
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ feat_dim (int): Number of input features.
|
|
|
|
|
+ head_dim (int): Number of features per head.
|
|
|
|
|
+ max_seq_len (int): Maximum sequence length.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ feat_dim: int,
|
|
|
|
|
+ head_dim: int,
|
|
|
|
|
+ max_seq_len: int,
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+
|
|
|
|
|
+ if feat_dim % head_dim != 0:
|
|
|
|
|
+ raise ValueError(f"feat_dim: {feat_dim} must be divisible by head_dim: {head_dim}")
|
|
|
|
|
+
|
|
|
|
|
+ self.n_heads = feat_dim // head_dim
|
|
|
|
|
+ self.head_dim = head_dim
|
|
|
|
|
+ self.size = int(math.sqrt(max_seq_len))
|
|
|
|
|
+ self.max_seq_len = max_seq_len
|
|
|
|
|
+
|
|
|
|
|
+ self.to_qkv = nn.Linear(feat_dim, self.n_heads * self.head_dim * 3)
|
|
|
|
|
+ self.scale_factor = feat_dim**-0.5
|
|
|
|
|
+
|
|
|
|
|
+ self.merge = nn.Linear(self.head_dim * self.n_heads, feat_dim)
|
|
|
|
|
+ self.relative_position_bias_table = nn.parameter.Parameter(
|
|
|
|
|
+ torch.empty(((2 * self.size - 1) * (2 * self.size - 1), self.n_heads), dtype=torch.float32),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ self.register_buffer("relative_position_index", _get_relative_position_index(self.size, self.size))
|
|
|
|
|
+ # initialize with truncated normal the bias
|
|
|
|
|
+ torch.nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02)
|
|
|
|
|
+
|
|
|
|
|
+ def get_relative_positional_bias(self) -> torch.Tensor:
|
|
|
|
|
+ bias_index = self.relative_position_index.view(-1) # type: ignore
|
|
|
|
|
+ relative_bias = self.relative_position_bias_table[bias_index].view(self.max_seq_len, self.max_seq_len, -1) # type: ignore
|
|
|
|
|
+ relative_bias = relative_bias.permute(2, 0, 1).contiguous()
|
|
|
|
|
+ return relative_bias.unsqueeze(0)
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor) -> Tensor:
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ x (Tensor): Input tensor with expected layout of [B, G, P, D].
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ Tensor: Output tensor with expected layout of [B, G, P, D].
|
|
|
|
|
+ """
|
|
|
|
|
+ B, G, P, D = x.shape
|
|
|
|
|
+ H, DH = self.n_heads, self.head_dim
|
|
|
|
|
+
|
|
|
|
|
+ qkv = self.to_qkv(x)
|
|
|
|
|
+ q, k, v = torch.chunk(qkv, 3, dim=-1)
|
|
|
|
|
+
|
|
|
|
|
+ q = q.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4)
|
|
|
|
|
+ k = k.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4)
|
|
|
|
|
+ v = v.reshape(B, G, P, H, DH).permute(0, 1, 3, 2, 4)
|
|
|
|
|
+
|
|
|
|
|
+ k = k * self.scale_factor
|
|
|
|
|
+ dot_prod = torch.einsum("B G H I D, B G H J D -> B G H I J", q, k)
|
|
|
|
|
+ pos_bias = self.get_relative_positional_bias()
|
|
|
|
|
+
|
|
|
|
|
+ dot_prod = F.softmax(dot_prod + pos_bias, dim=-1)
|
|
|
|
|
+
|
|
|
|
|
+ out = torch.einsum("B G H I J, B G H J D -> B G H I D", dot_prod, v)
|
|
|
|
|
+ out = out.permute(0, 1, 3, 2, 4).reshape(B, G, P, D)
|
|
|
|
|
+
|
|
|
|
|
+ out = self.merge(out)
|
|
|
|
|
+ return out
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class SwapAxes(nn.Module):
|
|
|
|
|
+ """Permute the axes of a tensor."""
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self, a: int, b: int) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ self.a = a
|
|
|
|
|
+ self.b = b
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
+ res = torch.swapaxes(x, self.a, self.b)
|
|
|
|
|
+ return res
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class WindowPartition(nn.Module):
|
|
|
|
|
+ """
|
|
|
|
|
+ Partition the input tensor into non-overlapping windows.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor, p: int) -> Tensor:
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ x (Tensor): Input tensor with expected layout of [B, C, H, W].
|
|
|
|
|
+ p (int): Number of partitions.
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ Tensor: Output tensor with expected layout of [B, H/P, W/P, P*P, C].
|
|
|
|
|
+ """
|
|
|
|
|
+ B, C, H, W = x.shape
|
|
|
|
|
+ P = p
|
|
|
|
|
+ # chunk up H and W dimensions
|
|
|
|
|
+ x = x.reshape(B, C, H // P, P, W // P, P)
|
|
|
|
|
+ x = x.permute(0, 2, 4, 3, 5, 1)
|
|
|
|
|
+ # colapse P * P dimension
|
|
|
|
|
+ x = x.reshape(B, (H // P) * (W // P), P * P, C)
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class WindowDepartition(nn.Module):
|
|
|
|
|
+ """
|
|
|
|
|
+ Departition the input tensor of non-overlapping windows into a feature volume of layout [B, C, H, W].
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor, p: int, h_partitions: int, w_partitions: int) -> Tensor:
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ x (Tensor): Input tensor with expected layout of [B, (H/P * W/P), P*P, C].
|
|
|
|
|
+ p (int): Number of partitions.
|
|
|
|
|
+ h_partitions (int): Number of vertical partitions.
|
|
|
|
|
+ w_partitions (int): Number of horizontal partitions.
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ Tensor: Output tensor with expected layout of [B, C, H, W].
|
|
|
|
|
+ """
|
|
|
|
|
+ B, G, PP, C = x.shape
|
|
|
|
|
+ P = p
|
|
|
|
|
+ HP, WP = h_partitions, w_partitions
|
|
|
|
|
+ # split P * P dimension into 2 P tile dimensionsa
|
|
|
|
|
+ x = x.reshape(B, HP, WP, P, P, C)
|
|
|
|
|
+ # permute into B, C, HP, P, WP, P
|
|
|
|
|
+ x = x.permute(0, 5, 1, 3, 2, 4)
|
|
|
|
|
+ # reshape into B, C, H, W
|
|
|
|
|
+ x = x.reshape(B, C, HP * P, WP * P)
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class PartitionAttentionLayer(nn.Module):
|
|
|
|
|
+ """
|
|
|
|
|
+ Layer for partitioning the input tensor into non-overlapping windows and applying attention to each window.
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ in_channels (int): Number of input channels.
|
|
|
|
|
+ head_dim (int): Dimension of each attention head.
|
|
|
|
|
+ partition_size (int): Size of the partitions.
|
|
|
|
|
+ partition_type (str): Type of partitioning to use. Can be either "grid" or "window".
|
|
|
|
|
+ grid_size (Tuple[int, int]): Size of the grid to partition the input tensor into.
|
|
|
|
|
+ mlp_ratio (int): Ratio of the feature size expansion in the MLP layer.
|
|
|
|
|
+ activation_layer (Callable[..., nn.Module]): Activation function to use.
|
|
|
|
|
+ norm_layer (Callable[..., nn.Module]): Normalization function to use.
|
|
|
|
|
+ attention_dropout (float): Dropout probability for the attention layer.
|
|
|
|
|
+ mlp_dropout (float): Dropout probability for the MLP layer.
|
|
|
|
|
+ p_stochastic_dropout (float): Probability of dropping out a partition.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ in_channels: int,
|
|
|
|
|
+ head_dim: int,
|
|
|
|
|
+ # partitioning parameters
|
|
|
|
|
+ partition_size: int,
|
|
|
|
|
+ partition_type: str,
|
|
|
|
|
+ # grid size needs to be known at initialization time
|
|
|
|
|
+ # because we need to know hamy relative offsets there are in the grid
|
|
|
|
|
+ grid_size: Tuple[int, int],
|
|
|
|
|
+ mlp_ratio: int,
|
|
|
|
|
+ activation_layer: Callable[..., nn.Module],
|
|
|
|
|
+ norm_layer: Callable[..., nn.Module],
|
|
|
|
|
+ attention_dropout: float,
|
|
|
|
|
+ mlp_dropout: float,
|
|
|
|
|
+ p_stochastic_dropout: float,
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+
|
|
|
|
|
+ self.n_heads = in_channels // head_dim
|
|
|
|
|
+ self.head_dim = head_dim
|
|
|
|
|
+ self.n_partitions = grid_size[0] // partition_size
|
|
|
|
|
+ self.partition_type = partition_type
|
|
|
|
|
+ self.grid_size = grid_size
|
|
|
|
|
+
|
|
|
|
|
+ if partition_type not in ["grid", "window"]:
|
|
|
|
|
+ raise ValueError("partition_type must be either 'grid' or 'window'")
|
|
|
|
|
+
|
|
|
|
|
+ if partition_type == "window":
|
|
|
|
|
+ self.p, self.g = partition_size, self.n_partitions
|
|
|
|
|
+ else:
|
|
|
|
|
+ self.p, self.g = self.n_partitions, partition_size
|
|
|
|
|
+
|
|
|
|
|
+ self.partition_op = WindowPartition()
|
|
|
|
|
+ self.departition_op = WindowDepartition()
|
|
|
|
|
+ self.partition_swap = SwapAxes(-2, -3) if partition_type == "grid" else nn.Identity()
|
|
|
|
|
+ self.departition_swap = SwapAxes(-2, -3) if partition_type == "grid" else nn.Identity()
|
|
|
|
|
+
|
|
|
|
|
+ self.attn_layer = nn.Sequential(
|
|
|
|
|
+ norm_layer(in_channels),
|
|
|
|
|
+ # it's always going to be partition_size ** 2 because
|
|
|
|
|
+ # of the axis swap in the case of grid partitioning
|
|
|
|
|
+ RelativePositionalMultiHeadAttention(in_channels, head_dim, partition_size**2),
|
|
|
|
|
+ nn.Dropout(attention_dropout),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # pre-normalization similar to transformer layers
|
|
|
|
|
+ self.mlp_layer = nn.Sequential(
|
|
|
|
|
+ nn.LayerNorm(in_channels),
|
|
|
|
|
+ nn.Linear(in_channels, in_channels * mlp_ratio),
|
|
|
|
|
+ activation_layer(),
|
|
|
|
|
+ nn.Linear(in_channels * mlp_ratio, in_channels),
|
|
|
|
|
+ nn.Dropout(mlp_dropout),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # layer scale factors
|
|
|
|
|
+ self.stochastic_dropout = StochasticDepth(p_stochastic_dropout, mode="row")
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor) -> Tensor:
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ x (Tensor): Input tensor with expected layout of [B, C, H, W].
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ Tensor: Output tensor with expected layout of [B, C, H, W].
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ # Undefined behavior if H or W are not divisible by p
|
|
|
|
|
+ # https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L766
|
|
|
|
|
+ gh, gw = self.grid_size[0] // self.p, self.grid_size[1] // self.p
|
|
|
|
|
+ torch._assert(
|
|
|
|
|
+ self.grid_size[0] % self.p == 0 and self.grid_size[1] % self.p == 0,
|
|
|
|
|
+ "Grid size must be divisible by partition size. Got grid size of {} and partition size of {}".format(
|
|
|
|
|
+ self.grid_size, self.p
|
|
|
|
|
+ ),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ x = self.partition_op(x, self.p)
|
|
|
|
|
+ x = self.partition_swap(x)
|
|
|
|
|
+ x = x + self.stochastic_dropout(self.attn_layer(x))
|
|
|
|
|
+ x = x + self.stochastic_dropout(self.mlp_layer(x))
|
|
|
|
|
+ x = self.departition_swap(x)
|
|
|
|
|
+ x = self.departition_op(x, self.p, gh, gw)
|
|
|
|
|
+
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class MaxVitLayer(nn.Module):
|
|
|
|
|
+ """
|
|
|
|
|
+ MaxVit layer consisting of a MBConv layer followed by a PartitionAttentionLayer with `window` and a PartitionAttentionLayer with `grid`.
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ in_channels (int): Number of input channels.
|
|
|
|
|
+ out_channels (int): Number of output channels.
|
|
|
|
|
+ expansion_ratio (float): Expansion ratio in the bottleneck.
|
|
|
|
|
+ squeeze_ratio (float): Squeeze ratio in the SE Layer.
|
|
|
|
|
+ stride (int): Stride of the depthwise convolution.
|
|
|
|
|
+ activation_layer (Callable[..., nn.Module]): Activation function.
|
|
|
|
|
+ norm_layer (Callable[..., nn.Module]): Normalization function.
|
|
|
|
|
+ head_dim (int): Dimension of the attention heads.
|
|
|
|
|
+ mlp_ratio (int): Ratio of the MLP layer.
|
|
|
|
|
+ mlp_dropout (float): Dropout probability for the MLP layer.
|
|
|
|
|
+ attention_dropout (float): Dropout probability for the attention layer.
|
|
|
|
|
+ p_stochastic_dropout (float): Probability of stochastic depth.
|
|
|
|
|
+ partition_size (int): Size of the partitions.
|
|
|
|
|
+ grid_size (Tuple[int, int]): Size of the input feature grid.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ # conv parameters
|
|
|
|
|
+ in_channels: int,
|
|
|
|
|
+ out_channels: int,
|
|
|
|
|
+ squeeze_ratio: float,
|
|
|
|
|
+ expansion_ratio: float,
|
|
|
|
|
+ stride: int,
|
|
|
|
|
+ # conv + transformer parameters
|
|
|
|
|
+ norm_layer: Callable[..., nn.Module],
|
|
|
|
|
+ activation_layer: Callable[..., nn.Module],
|
|
|
|
|
+ # transformer parameters
|
|
|
|
|
+ head_dim: int,
|
|
|
|
|
+ mlp_ratio: int,
|
|
|
|
|
+ mlp_dropout: float,
|
|
|
|
|
+ attention_dropout: float,
|
|
|
|
|
+ p_stochastic_dropout: float,
|
|
|
|
|
+ # partitioning parameters
|
|
|
|
|
+ partition_size: int,
|
|
|
|
|
+ grid_size: Tuple[int, int],
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+
|
|
|
|
|
+ layers: OrderedDict = OrderedDict()
|
|
|
|
|
+
|
|
|
|
|
+ # convolutional layer
|
|
|
|
|
+ layers["MBconv"] = MBConv(
|
|
|
|
|
+ in_channels=in_channels,
|
|
|
|
|
+ out_channels=out_channels,
|
|
|
|
|
+ expansion_ratio=expansion_ratio,
|
|
|
|
|
+ squeeze_ratio=squeeze_ratio,
|
|
|
|
|
+ stride=stride,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ norm_layer=norm_layer,
|
|
|
|
|
+ p_stochastic_dropout=p_stochastic_dropout,
|
|
|
|
|
+ )
|
|
|
|
|
+ # attention layers, block -> grid
|
|
|
|
|
+ layers["window_attention"] = PartitionAttentionLayer(
|
|
|
|
|
+ in_channels=out_channels,
|
|
|
|
|
+ head_dim=head_dim,
|
|
|
|
|
+ partition_size=partition_size,
|
|
|
|
|
+ partition_type="window",
|
|
|
|
|
+ grid_size=grid_size,
|
|
|
|
|
+ mlp_ratio=mlp_ratio,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ norm_layer=nn.LayerNorm,
|
|
|
|
|
+ attention_dropout=attention_dropout,
|
|
|
|
|
+ mlp_dropout=mlp_dropout,
|
|
|
|
|
+ p_stochastic_dropout=p_stochastic_dropout,
|
|
|
|
|
+ )
|
|
|
|
|
+ layers["grid_attention"] = PartitionAttentionLayer(
|
|
|
|
|
+ in_channels=out_channels,
|
|
|
|
|
+ head_dim=head_dim,
|
|
|
|
|
+ partition_size=partition_size,
|
|
|
|
|
+ partition_type="grid",
|
|
|
|
|
+ grid_size=grid_size,
|
|
|
|
|
+ mlp_ratio=mlp_ratio,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ norm_layer=nn.LayerNorm,
|
|
|
|
|
+ attention_dropout=attention_dropout,
|
|
|
|
|
+ mlp_dropout=mlp_dropout,
|
|
|
|
|
+ p_stochastic_dropout=p_stochastic_dropout,
|
|
|
|
|
+ )
|
|
|
|
|
+ self.layers = nn.Sequential(layers)
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor) -> Tensor:
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ x (Tensor): Input tensor of shape (B, C, H, W).
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ Tensor: Output tensor of shape (B, C, H, W).
|
|
|
|
|
+ """
|
|
|
|
|
+ x = self.layers(x)
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class MaxVitBlock(nn.Module):
|
|
|
|
|
+ """
|
|
|
|
|
+ A MaxVit block consisting of `n_layers` MaxVit layers.
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ in_channels (int): Number of input channels.
|
|
|
|
|
+ out_channels (int): Number of output channels.
|
|
|
|
|
+ expansion_ratio (float): Expansion ratio in the bottleneck.
|
|
|
|
|
+ squeeze_ratio (float): Squeeze ratio in the SE Layer.
|
|
|
|
|
+ activation_layer (Callable[..., nn.Module]): Activation function.
|
|
|
|
|
+ norm_layer (Callable[..., nn.Module]): Normalization function.
|
|
|
|
|
+ head_dim (int): Dimension of the attention heads.
|
|
|
|
|
+ mlp_ratio (int): Ratio of the MLP layer.
|
|
|
|
|
+ mlp_dropout (float): Dropout probability for the MLP layer.
|
|
|
|
|
+ attention_dropout (float): Dropout probability for the attention layer.
|
|
|
|
|
+ p_stochastic_dropout (float): Probability of stochastic depth.
|
|
|
|
|
+ partition_size (int): Size of the partitions.
|
|
|
|
|
+ input_grid_size (Tuple[int, int]): Size of the input feature grid.
|
|
|
|
|
+ n_layers (int): Number of layers in the block.
|
|
|
|
|
+ p_stochastic (List[float]): List of probabilities for stochastic depth for each layer.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ # conv parameters
|
|
|
|
|
+ in_channels: int,
|
|
|
|
|
+ out_channels: int,
|
|
|
|
|
+ squeeze_ratio: float,
|
|
|
|
|
+ expansion_ratio: float,
|
|
|
|
|
+ # conv + transformer parameters
|
|
|
|
|
+ norm_layer: Callable[..., nn.Module],
|
|
|
|
|
+ activation_layer: Callable[..., nn.Module],
|
|
|
|
|
+ # transformer parameters
|
|
|
|
|
+ head_dim: int,
|
|
|
|
|
+ mlp_ratio: int,
|
|
|
|
|
+ mlp_dropout: float,
|
|
|
|
|
+ attention_dropout: float,
|
|
|
|
|
+ # partitioning parameters
|
|
|
|
|
+ partition_size: int,
|
|
|
|
|
+ input_grid_size: Tuple[int, int],
|
|
|
|
|
+ # number of layers
|
|
|
|
|
+ n_layers: int,
|
|
|
|
|
+ p_stochastic: List[float],
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ if not len(p_stochastic) == n_layers:
|
|
|
|
|
+ raise ValueError(f"p_stochastic must have length n_layers={n_layers}, got p_stochastic={p_stochastic}.")
|
|
|
|
|
+
|
|
|
|
|
+ self.layers = nn.ModuleList()
|
|
|
|
|
+ # account for the first stride of the first layer
|
|
|
|
|
+ self.grid_size = _get_conv_output_shape(input_grid_size, kernel_size=3, stride=2, padding=1)
|
|
|
|
|
+
|
|
|
|
|
+ for idx, p in enumerate(p_stochastic):
|
|
|
|
|
+ stride = 2 if idx == 0 else 1
|
|
|
|
|
+ self.layers += [
|
|
|
|
|
+ MaxVitLayer(
|
|
|
|
|
+ in_channels=in_channels if idx == 0 else out_channels,
|
|
|
|
|
+ out_channels=out_channels,
|
|
|
|
|
+ squeeze_ratio=squeeze_ratio,
|
|
|
|
|
+ expansion_ratio=expansion_ratio,
|
|
|
|
|
+ stride=stride,
|
|
|
|
|
+ norm_layer=norm_layer,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ head_dim=head_dim,
|
|
|
|
|
+ mlp_ratio=mlp_ratio,
|
|
|
|
|
+ mlp_dropout=mlp_dropout,
|
|
|
|
|
+ attention_dropout=attention_dropout,
|
|
|
|
|
+ partition_size=partition_size,
|
|
|
|
|
+ grid_size=self.grid_size,
|
|
|
|
|
+ p_stochastic_dropout=p,
|
|
|
|
|
+ ),
|
|
|
|
|
+ ]
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor) -> Tensor:
|
|
|
|
|
+ """
|
|
|
|
|
+ Args:
|
|
|
|
|
+ x (Tensor): Input tensor of shape (B, C, H, W).
|
|
|
|
|
+ Returns:
|
|
|
|
|
+ Tensor: Output tensor of shape (B, C, H, W).
|
|
|
|
|
+ """
|
|
|
|
|
+ for layer in self.layers:
|
|
|
|
|
+ x = layer(x)
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class MaxVit(nn.Module):
|
|
|
|
|
+ """
|
|
|
|
|
+ Implements MaxVit Transformer from the `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_ paper.
|
|
|
|
|
+ Args:
|
|
|
|
|
+ input_size (Tuple[int, int]): Size of the input image.
|
|
|
|
|
+ stem_channels (int): Number of channels in the stem.
|
|
|
|
|
+ partition_size (int): Size of the partitions.
|
|
|
|
|
+ block_channels (List[int]): Number of channels in each block.
|
|
|
|
|
+ block_layers (List[int]): Number of layers in each block.
|
|
|
|
|
+ stochastic_depth_prob (float): Probability of stochastic depth. Expands to a list of probabilities for each layer that scales linearly to the specified value.
|
|
|
|
|
+ squeeze_ratio (float): Squeeze ratio in the SE Layer. Default: 0.25.
|
|
|
|
|
+ expansion_ratio (float): Expansion ratio in the MBConv bottleneck. Default: 4.
|
|
|
|
|
+ norm_layer (Callable[..., nn.Module]): Normalization function. Default: None (setting to None will produce a `BatchNorm2d(eps=1e-3, momentum=0.99)`).
|
|
|
|
|
+ activation_layer (Callable[..., nn.Module]): Activation function Default: nn.GELU.
|
|
|
|
|
+ head_dim (int): Dimension of the attention heads.
|
|
|
|
|
+ mlp_ratio (int): Expansion ratio of the MLP layer. Default: 4.
|
|
|
|
|
+ mlp_dropout (float): Dropout probability for the MLP layer. Default: 0.0.
|
|
|
|
|
+ attention_dropout (float): Dropout probability for the attention layer. Default: 0.0.
|
|
|
|
|
+ num_classes (int): Number of classes. Default: 1000.
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(
|
|
|
|
|
+ self,
|
|
|
|
|
+ # input size parameters
|
|
|
|
|
+ input_size: Tuple[int, int],
|
|
|
|
|
+ # stem and task parameters
|
|
|
|
|
+ stem_channels: int,
|
|
|
|
|
+ # partitioning parameters
|
|
|
|
|
+ partition_size: int,
|
|
|
|
|
+ # block parameters
|
|
|
|
|
+ block_channels: List[int],
|
|
|
|
|
+ block_layers: List[int],
|
|
|
|
|
+ # attention head dimensions
|
|
|
|
|
+ head_dim: int,
|
|
|
|
|
+ stochastic_depth_prob: float,
|
|
|
|
|
+ # conv + transformer parameters
|
|
|
|
|
+ # norm_layer is applied only to the conv layers
|
|
|
|
|
+ # activation_layer is applied both to conv and transformer layers
|
|
|
|
|
+ norm_layer: Optional[Callable[..., nn.Module]] = None,
|
|
|
|
|
+ activation_layer: Callable[..., nn.Module] = nn.GELU,
|
|
|
|
|
+ # conv parameters
|
|
|
|
|
+ squeeze_ratio: float = 0.25,
|
|
|
|
|
+ expansion_ratio: float = 4,
|
|
|
|
|
+ # transformer parameters
|
|
|
|
|
+ mlp_ratio: int = 4,
|
|
|
|
|
+ mlp_dropout: float = 0.0,
|
|
|
|
|
+ attention_dropout: float = 0.0,
|
|
|
|
|
+ # task parameters
|
|
|
|
|
+ num_classes: int = 1000,
|
|
|
|
|
+ ) -> None:
|
|
|
|
|
+ super().__init__()
|
|
|
|
|
+ _log_api_usage_once(self)
|
|
|
|
|
+
|
|
|
|
|
+ input_channels = 3
|
|
|
|
|
+
|
|
|
|
|
+ # https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L1029-L1030
|
|
|
|
|
+ # for the exact parameters used in batchnorm
|
|
|
|
|
+ if norm_layer is None:
|
|
|
|
|
+ norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.99)
|
|
|
|
|
+
|
|
|
|
|
+ # Make sure input size will be divisible by the partition size in all blocks
|
|
|
|
|
+ # Undefined behavior if H or W are not divisible by p
|
|
|
|
|
+ # https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L766
|
|
|
|
|
+ block_input_sizes = _make_block_input_shapes(input_size, len(block_channels))
|
|
|
|
|
+ for idx, block_input_size in enumerate(block_input_sizes):
|
|
|
|
|
+ if block_input_size[0] % partition_size != 0 or block_input_size[1] % partition_size != 0:
|
|
|
|
|
+ raise ValueError(
|
|
|
|
|
+ f"Input size {block_input_size} of block {idx} is not divisible by partition size {partition_size}. "
|
|
|
|
|
+ f"Consider changing the partition size or the input size.\n"
|
|
|
|
|
+ f"Current configuration yields the following block input sizes: {block_input_sizes}."
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ # stem
|
|
|
|
|
+ self.stem0 = nn.Sequential(
|
|
|
|
|
+ Conv2dNormActivation(
|
|
|
|
|
+ input_channels,
|
|
|
|
|
+ stem_channels,
|
|
|
|
|
+ 3,
|
|
|
|
|
+ stride=1,
|
|
|
|
|
+ norm_layer=norm_layer,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ bias=False,
|
|
|
|
|
+ inplace=None,
|
|
|
|
|
+ ),
|
|
|
|
|
+ Conv2dNormActivation(
|
|
|
|
|
+ stem_channels, stem_channels, 3, stride=1, norm_layer=None, activation_layer=None, bias=True
|
|
|
|
|
+ ),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ self.stem1 = nn.Sequential(
|
|
|
|
|
+ Conv2dNormActivation(
|
|
|
|
|
+ stem_channels,
|
|
|
|
|
+ stem_channels,
|
|
|
|
|
+ 3,
|
|
|
|
|
+ stride=2,
|
|
|
|
|
+ norm_layer=norm_layer,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ bias=False,
|
|
|
|
|
+ inplace=None,
|
|
|
|
|
+ ),
|
|
|
|
|
+ Conv2dNormActivation(
|
|
|
|
|
+ stem_channels, stem_channels, 3, stride=1, norm_layer=None, activation_layer=None, bias=True
|
|
|
|
|
+ ),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+ # account for stem stride
|
|
|
|
|
+ input_size = _get_conv_output_shape(input_size, kernel_size=3, stride=2, padding=1)
|
|
|
|
|
+ self.partition_size = partition_size
|
|
|
|
|
+
|
|
|
|
|
+ # blocks
|
|
|
|
|
+ self.blocks = nn.ModuleList()
|
|
|
|
|
+ in_channels = [stem_channels] + block_channels[:-1]
|
|
|
|
|
+ out_channels = block_channels
|
|
|
|
|
+
|
|
|
|
|
+ # precompute the stochastich depth probabilities from 0 to stochastic_depth_prob
|
|
|
|
|
+ # since we have N blocks with L layers, we will have N * L probabilities uniformly distributed
|
|
|
|
|
+ # over the range [0, stochastic_depth_prob]
|
|
|
|
|
+ p_stochastic = np.linspace(0, stochastic_depth_prob, sum(block_layers)).tolist()
|
|
|
|
|
+
|
|
|
|
|
+ p_idx = 0
|
|
|
|
|
+ for in_channel, out_channel, num_layers in zip(in_channels, out_channels, block_layers):
|
|
|
|
|
+ self.blocks.append(
|
|
|
|
|
+ MaxVitBlock(
|
|
|
|
|
+ in_channels=in_channel,
|
|
|
|
|
+ out_channels=out_channel,
|
|
|
|
|
+ squeeze_ratio=squeeze_ratio,
|
|
|
|
|
+ expansion_ratio=expansion_ratio,
|
|
|
|
|
+ norm_layer=norm_layer,
|
|
|
|
|
+ activation_layer=activation_layer,
|
|
|
|
|
+ head_dim=head_dim,
|
|
|
|
|
+ mlp_ratio=mlp_ratio,
|
|
|
|
|
+ mlp_dropout=mlp_dropout,
|
|
|
|
|
+ attention_dropout=attention_dropout,
|
|
|
|
|
+ partition_size=partition_size,
|
|
|
|
|
+ input_grid_size=input_size,
|
|
|
|
|
+ n_layers=num_layers,
|
|
|
|
|
+ p_stochastic=p_stochastic[p_idx : p_idx + num_layers],
|
|
|
|
|
+ ),
|
|
|
|
|
+ )
|
|
|
|
|
+ input_size = self.blocks[-1].grid_size
|
|
|
|
|
+ p_idx += num_layers
|
|
|
|
|
+
|
|
|
|
|
+ # see https://github.com/google-research/maxvit/blob/da76cf0d8a6ec668cc31b399c4126186da7da944/maxvit/models/maxvit.py#L1137-L1158
|
|
|
|
|
+ # for why there is Linear -> Tanh -> Linear
|
|
|
|
|
+ self.classifier = nn.Sequential(
|
|
|
|
|
+ nn.AdaptiveAvgPool2d(1),
|
|
|
|
|
+ nn.Flatten(),
|
|
|
|
|
+ nn.LayerNorm(block_channels[-1]),
|
|
|
|
|
+ nn.Linear(block_channels[-1], block_channels[-1]),
|
|
|
|
|
+ nn.Tanh(),
|
|
|
|
|
+ nn.Linear(block_channels[-1], num_classes, bias=False),
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ self._init_weights()
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x: Tensor) -> Tensor:
|
|
|
|
|
+ x = self.stem0(x)
|
|
|
|
|
+ x=self.stem1(x)
|
|
|
|
|
+ for block in self.blocks:
|
|
|
|
|
+ x = block(x)
|
|
|
|
|
+ x = self.classifier(x)
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+ def _init_weights(self):
|
|
|
|
|
+ for m in self.modules():
|
|
|
|
|
+ if isinstance(m, nn.Conv2d):
|
|
|
|
|
+ nn.init.normal_(m.weight, std=0.02)
|
|
|
|
|
+ if m.bias is not None:
|
|
|
|
|
+ nn.init.zeros_(m.bias)
|
|
|
|
|
+ elif isinstance(m, nn.BatchNorm2d):
|
|
|
|
|
+ nn.init.constant_(m.weight, 1)
|
|
|
|
|
+ nn.init.constant_(m.bias, 0)
|
|
|
|
|
+ elif isinstance(m, nn.Linear):
|
|
|
|
|
+ nn.init.normal_(m.weight, std=0.02)
|
|
|
|
|
+ if m.bias is not None:
|
|
|
|
|
+ nn.init.zeros_(m.bias)
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+def _maxvit(
|
|
|
|
|
+ # stem parameters
|
|
|
|
|
+ stem_channels: int,
|
|
|
|
|
+ # block parameters
|
|
|
|
|
+ block_channels: List[int],
|
|
|
|
|
+ block_layers: List[int],
|
|
|
|
|
+ stochastic_depth_prob: float,
|
|
|
|
|
+ # partitioning parameters
|
|
|
|
|
+ partition_size: int,
|
|
|
|
|
+ # transformer parameters
|
|
|
|
|
+ head_dim: int,
|
|
|
|
|
+ # Weights API
|
|
|
|
|
+ weights: Optional[WeightsEnum] = None,
|
|
|
|
|
+ progress: bool = False,
|
|
|
|
|
+ # kwargs,
|
|
|
|
|
+ **kwargs: Any,
|
|
|
|
|
+) -> MaxVit:
|
|
|
|
|
+
|
|
|
|
|
+ if weights is not None:
|
|
|
|
|
+ _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
|
|
|
|
+ assert weights.meta["min_size"][0] == weights.meta["min_size"][1]
|
|
|
|
|
+ _ovewrite_named_param(kwargs, "input_size", weights.meta["min_size"])
|
|
|
|
|
+
|
|
|
|
|
+ input_size = kwargs.pop("input_size", (224, 224))
|
|
|
|
|
+
|
|
|
|
|
+ model = MaxVit(
|
|
|
|
|
+ stem_channels=stem_channels,
|
|
|
|
|
+ block_channels=block_channels,
|
|
|
|
|
+ block_layers=block_layers,
|
|
|
|
|
+ stochastic_depth_prob=stochastic_depth_prob,
|
|
|
|
|
+ head_dim=head_dim,
|
|
|
|
|
+ partition_size=partition_size,
|
|
|
|
|
+ input_size=input_size,
|
|
|
|
|
+ **kwargs,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+ if weights is not None:
|
|
|
|
|
+ model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
|
|
|
|
+
|
|
|
|
|
+ return model
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class MaxVit_T_Weights(WeightsEnum):
|
|
|
|
|
+ IMAGENET1K_V1 = Weights(
|
|
|
|
|
+ # URL empty until official release
|
|
|
|
|
+ url="https://download.pytorch.org/models/maxvit_t-bc5ab103.pth",
|
|
|
|
|
+ transforms=partial(
|
|
|
|
|
+ ImageClassification, crop_size=224, resize_size=224, interpolation=InterpolationMode.BICUBIC
|
|
|
|
|
+ ),
|
|
|
|
|
+ meta={
|
|
|
|
|
+ "categories": _IMAGENET_CATEGORIES,
|
|
|
|
|
+ "num_params": 30919624,
|
|
|
|
|
+ "min_size": (224, 224),
|
|
|
|
|
+ "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#maxvit",
|
|
|
|
|
+ "_metrics": {
|
|
|
|
|
+ "ImageNet-1K": {
|
|
|
|
|
+ "acc@1": 83.700,
|
|
|
|
|
+ "acc@5": 96.722,
|
|
|
|
|
+ }
|
|
|
|
|
+ },
|
|
|
|
|
+ "_ops": 5.558,
|
|
|
|
|
+ "_file_size": 118.769,
|
|
|
|
|
+ "_docs": """These weights reproduce closely the results of the paper using a similar training recipe.""",
|
|
|
|
|
+ },
|
|
|
|
|
+ )
|
|
|
|
|
+ DEFAULT = IMAGENET1K_V1
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+@handle_legacy_interface(weights=("pretrained", MaxVit_T_Weights.IMAGENET1K_V1))
|
|
|
|
|
+def maxvit_t(*, weights: Optional[MaxVit_T_Weights] = None, progress: bool = True, **kwargs: Any) -> MaxVit:
|
|
|
|
|
+ """
|
|
|
|
|
+ Constructs a maxvit_t architecture from
|
|
|
|
|
+ `MaxViT: Multi-Axis Vision Transformer <https://arxiv.org/abs/2204.01697>`_.
|
|
|
|
|
+
|
|
|
|
|
+ Args:
|
|
|
|
|
+ weights (:class:`~torchvision.models.MaxVit_T_Weights`, optional): The
|
|
|
|
|
+ pretrained weights to use. See
|
|
|
|
|
+ :class:`~torchvision.models.MaxVit_T_Weights` below for
|
|
|
|
|
+ more details, and possible values. By default, no pre-trained
|
|
|
|
|
+ weights are used.
|
|
|
|
|
+ progress (bool, optional): If True, displays a progress bar of the
|
|
|
|
|
+ download to stderr. Default is True.
|
|
|
|
|
+ **kwargs: parameters passed to the ``torchvision.models.maxvit.MaxVit``
|
|
|
|
|
+ base class. Please refer to the `source code
|
|
|
|
|
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/maxvit.py>`_
|
|
|
|
|
+ for more details about this class.
|
|
|
|
|
+
|
|
|
|
|
+ .. autoclass:: torchvision.models.MaxVit_T_Weights
|
|
|
|
|
+ :members:
|
|
|
|
|
+ """
|
|
|
|
|
+ weights = MaxVit_T_Weights.verify(weights)
|
|
|
|
|
+
|
|
|
|
|
+ return _maxvit(
|
|
|
|
|
+ stem_channels=64,
|
|
|
|
|
+ block_channels=[64, 128, 256, 512],
|
|
|
|
|
+ block_layers=[2, 2, 5, 2],
|
|
|
|
|
+ head_dim=32,
|
|
|
|
|
+ stochastic_depth_prob=0.2,
|
|
|
|
|
+ partition_size=7,
|
|
|
|
|
+ weights=weights,
|
|
|
|
|
+ progress=progress,
|
|
|
|
|
+ **kwargs,
|
|
|
|
|
+ )
|
|
|
|
|
+
|
|
|
|
|
+class MaxVitBackbone(torch.nn.Module):
|
|
|
|
|
+ def __init__(self,input_size=(224*2,224*2)):
|
|
|
|
|
+ super(MaxVitBackbone, self).__init__()
|
|
|
|
|
+ # æåMaxVitçé¨åå±ä½ä¸ºç¹å¾æåå¨
|
|
|
|
|
+ maxvit_model = maxvit_t(pretrained=False,input_size=input_size)
|
|
|
|
|
+
|
|
|
|
|
+ self.stem0 = maxvit_model.stem0 # Stemå±
|
|
|
|
|
+ self.stem1 = maxvit_model.stem1 # Stemå±
|
|
|
|
|
+ self.block0= maxvit_model.blocks[0]
|
|
|
|
|
+ self.block1 = maxvit_model.blocks[1]
|
|
|
|
|
+ self.block2 = maxvit_model.blocks[2]
|
|
|
|
|
+ self.block3 = maxvit_model.blocks[3]
|
|
|
|
|
+
|
|
|
|
|
+ def forward(self, x):
|
|
|
|
|
+ print("Input size:", x.shape)
|
|
|
|
|
+ x = self.stem0(x)
|
|
|
|
|
+ print("After stem0 size:", x.shape)
|
|
|
|
|
+ x=self.stem1(x)
|
|
|
|
|
+ print("After stem1 size:", x.shape)
|
|
|
|
|
+ x = self.block0(x)
|
|
|
|
|
+ print("After block0 size:", x.shape)
|
|
|
|
|
+ x = self.block1(x)
|
|
|
|
|
+ print("After block1 size:", x.shape)
|
|
|
|
|
+ x = self.block2(x)
|
|
|
|
|
+ print("After block2 size:", x.shape)
|
|
|
|
|
+ x = self.block3(x)
|
|
|
|
|
+ print("After block3 size:", x.shape)
|
|
|
|
|
+ return x
|
|
|
|
|
+
|
|
|
|
|
+def maxvit_with_fpn(size=224):
|
|
|
|
|
+ maxvit = MaxVitBackbone(input_size=(size, size))
|
|
|
|
|
+ in_channels_list = [64, 64, 64, 128, 256, 512]
|
|
|
|
|
+ featmap_names = ['0', '1', '2', '3', '4','5', 'pool']
|
|
|
|
|
+ # print(f'featmap_names:{featmap_names}')
|
|
|
|
|
+ # roi_pooler = MultiScaleRoIAlign(
|
|
|
|
|
+ # featmap_names=featmap_names,
|
|
|
|
|
+ # output_size=7,
|
|
|
|
|
+ # sampling_ratio=2
|
|
|
|
|
+ # )
|
|
|
|
|
+ backbone_with_fpn = BackboneWithFPN(
|
|
|
|
|
+ maxvit,
|
|
|
|
|
+ return_layers={'stem0': '0', 'stem1': '1', 'block0': '2', 'block1': '3', 'block2': '4', 'block3': '5'},
|
|
|
|
|
+ # ç¡®ä¿è¿äºé®å¯¹åºå°å®é
çå±
|
|
|
|
|
+ in_channels_list=in_channels_list,
|
|
|
|
|
+ out_channels=256
|
|
|
|
|
+ )
|
|
|
|
|
+ test_input = torch.randn(1, 3, size, size)
|
|
|
|
|
+
|
|
|
|
|
+ return backbone_with_fpn
|
|
|
|
|
+
|
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
|
+ maxvit = MaxVitBackbone(input_size=(224 * 3, 224 * 3))
|
|
|
|
|
+ in_channels_list = [64,64, 64, 128, 256, 512]
|
|
|
|
|
+ featmap_names = ['0', '1', '2', '3', '4', 'pool']
|
|
|
|
|
+ # print(f'featmap_names:{featmap_names}')
|
|
|
|
|
+ # roi_pooler = MultiScaleRoIAlign(
|
|
|
|
|
+ # featmap_names=featmap_names,
|
|
|
|
|
+ # output_size=7,
|
|
|
|
|
+ # sampling_ratio=2
|
|
|
|
|
+ # )
|
|
|
|
|
+ backbone_with_fpn = BackboneWithFPN(
|
|
|
|
|
+ maxvit,
|
|
|
|
|
+ return_layers={'stem0': '0','stem1': '1', 'block0': '2', 'block1': '3', 'block2': '4', 'block3': '5'}, # ç¡®ä¿è¿äºé®å¯¹åºå°å®é
çå±
|
|
|
|
|
+ in_channels_list=in_channels_list,
|
|
|
|
|
+ out_channels=256
|
|
|
|
|
+ )
|
|
|
|
|
+ test_input = torch.randn(1, 3, 224 * 3, 224* 3 )
|
|
|
|
|
+
|
|
|
|
|
+ # model = FasterRCNN(
|
|
|
|
|
+ # backbone=backbone_with_fpn,
|
|
|
|
|
+ # min_size=224 * 5,
|
|
|
|
|
+ # max_size=224 * 5,
|
|
|
|
|
+ # num_classes=91, # COCO æ°æ®éæ 91 ç±»
|
|
|
|
|
+ # rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
|
|
|
|
|
+ # box_roi_pool=roi_pooler
|
|
|
|
|
+ # )
|
|
|
|
|
+
|
|
|
|
|
+ out = maxvit(test_input)
|
|
|
|
|
+ with torch.no_grad():
|
|
|
|
|
+ output = backbone_with_fpn(test_input)
|
|
|
|
|
+ #
|
|
|
|
|
+ print("Output feature maps:")
|
|
|
|
|
+
|
|
|
|
|
+ for k, v in output.items():
|
|
|
|
|
+ print(f"{k}: {v.shape}")
|
|
|
|
|
+
|
|
|
|
|
+ # model.eval()
|
|
|
|
|
+ # output = model(test_input)
|
|
|
|
|
+ # print(f'fasterrcnn output:{output}')
|