|
|
@@ -0,0 +1,239 @@
|
|
|
+import os
|
|
|
+import time
|
|
|
+from datetime import datetime
|
|
|
+import torch
|
|
|
+from torch.utils.tensorboard import SummaryWriter
|
|
|
+from models.base.base_model import BaseModel
|
|
|
+from models.base.base_trainer import BaseTrainer
|
|
|
+from models.config.config_tool import read_yaml
|
|
|
+from models.line_detect.dataset_LD import WirePointDataset
|
|
|
+from models.line_detect.postprocess import box_line_, show_
|
|
|
+from utils.log_util import show_line, save_last_model, save_best_model
|
|
|
+from tools import utils
|
|
|
+
|
|
|
+
|
|
|
+def _loss(losses):
|
|
|
+ total_loss = 0
|
|
|
+ for i in losses.keys():
|
|
|
+ if i != "loss_wirepoint":
|
|
|
+ total_loss += losses[i]
|
|
|
+ else:
|
|
|
+ loss_labels = losses[i]["losses"]
|
|
|
+ loss_labels_k = list(loss_labels[0].keys())
|
|
|
+ for j, name in enumerate(loss_labels_k):
|
|
|
+ loss = loss_labels[0][name].mean()
|
|
|
+ total_loss += loss
|
|
|
+ return total_loss
|
|
|
+
|
|
|
+
|
|
|
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
+
|
|
|
+
|
|
|
+def move_to_device(data, device):
|
|
|
+ if isinstance(data, (list, tuple)):
|
|
|
+ return type(data)(move_to_device(item, device) for item in data)
|
|
|
+ elif isinstance(data, dict):
|
|
|
+ return {key: move_to_device(value, device) for key, value in data.items()}
|
|
|
+ elif isinstance(data, torch.Tensor):
|
|
|
+ return data.to(device)
|
|
|
+ else:
|
|
|
+ return data # 对于非张量类型的数据不做任何改变
|
|
|
+
|
|
|
+
|
|
|
+class Trainer(BaseTrainer):
|
|
|
+ def __init__(self, model=None,
|
|
|
+ dataset=None,
|
|
|
+ device='cuda',
|
|
|
+ freeze_config=None, # 新增:冻结参数配置
|
|
|
+ **kwargs):
|
|
|
+ super().__init__(model, dataset, device, **kwargs)
|
|
|
+ self.freeze_config = freeze_config or {} # 默认冻结配置为空
|
|
|
+ def move_to_device(self, data, device):
|
|
|
+ if isinstance(data, (list, tuple)):
|
|
|
+ return type(data)(self.move_to_device(item, device) for item in data)
|
|
|
+ elif isinstance(data, dict):
|
|
|
+ return {key: self.move_to_device(value, device) for key, value in data.items()}
|
|
|
+ elif isinstance(data, torch.Tensor):
|
|
|
+ return data.to(device)
|
|
|
+ else:
|
|
|
+ return data # 对于非张量类型的数据不做任何改变
|
|
|
+ def freeze_params(self, model):
|
|
|
+ """根据配置冻结模型参数"""
|
|
|
+ default_config = {
|
|
|
+ 'backbone': True, # 冻结 backbone
|
|
|
+ 'rpn': False, # 不冻结 rpn
|
|
|
+ 'roi_heads': {
|
|
|
+ 'box_head': False,
|
|
|
+ 'box_predictor': False,
|
|
|
+ 'line_head': False,
|
|
|
+ 'line_predictor': {
|
|
|
+ 'fc1': False,
|
|
|
+ 'fc2': {
|
|
|
+ '0': False,
|
|
|
+ '2': False,
|
|
|
+ '4': False
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ # 更新默认配置
|
|
|
+ default_config.update(self.freeze_config)
|
|
|
+ config = default_config
|
|
|
+
|
|
|
+ print("\n===== Parameter Freezing Configuration =====")
|
|
|
+ for name, module in model.named_children():
|
|
|
+ if name in config:
|
|
|
+ if isinstance(config[name], bool):
|
|
|
+ for param in module.parameters():
|
|
|
+ param.requires_grad = not config[name]
|
|
|
+ print(f"{'Frozen' if config[name] else 'Trainable'} module: {name}")
|
|
|
+
|
|
|
+ elif isinstance(config[name], dict):
|
|
|
+ for subname, submodule in module.named_children():
|
|
|
+ if subname in config[name]:
|
|
|
+ if isinstance(config[name][subname], bool):
|
|
|
+ for param in submodule.parameters():
|
|
|
+ param.requires_grad = not config[name][subname]
|
|
|
+ print(
|
|
|
+ f"{'Frozen' if config[name][subname] else 'Trainable'} submodule: {name}.{subname}")
|
|
|
+
|
|
|
+ elif isinstance(config[name][subname], dict):
|
|
|
+ for subsubname, subsubmodule in submodule.named_children():
|
|
|
+ if subsubname in config[name][subname]:
|
|
|
+ for param in subsubmodule.parameters():
|
|
|
+ param.requires_grad = not config[name][subname][subsubname]
|
|
|
+ print(
|
|
|
+ f"{'Frozen' if config[name][subname][subsubname] else 'Trainable'} sub-submodule: {name}.{subname}.{subsubname}")
|
|
|
+
|
|
|
+ # 打印参数统计
|
|
|
+ total_params = sum(p.numel() for p in model.parameters())
|
|
|
+ trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
+ print(f"\nTotal Parameters: {total_params:,}")
|
|
|
+ print(f"Trainable Parameters: {trainable_params:,}")
|
|
|
+ print(f"Frozen Parameters: {total_params - trainable_params:,}")
|
|
|
+
|
|
|
+ def load_best_model(self, model, optimizer, save_path, device):
|
|
|
+ if os.path.exists(save_path):
|
|
|
+ checkpoint = torch.load(save_path, map_location=device)
|
|
|
+ model.load_state_dict(checkpoint['model_state_dict'])
|
|
|
+ if optimizer is not None:
|
|
|
+ optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
|
|
+ epoch = checkpoint['epoch']
|
|
|
+ loss = checkpoint['loss']
|
|
|
+ print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
|
|
|
+ else:
|
|
|
+ print(f"No saved model found at {save_path}")
|
|
|
+ return model, optimizer
|
|
|
+
|
|
|
+ def writer_loss(self, writer, losses, epoch):
|
|
|
+ try:
|
|
|
+ for key, value in losses.items():
|
|
|
+ if key == 'loss_wirepoint':
|
|
|
+ for subdict in losses['loss_wirepoint']['losses']:
|
|
|
+ for subkey, subvalue in subdict.items():
|
|
|
+ writer.add_scalar(f'loss/{subkey}',
|
|
|
+ subvalue.item() if hasattr(subvalue, 'item') else subvalue,
|
|
|
+ epoch)
|
|
|
+ elif isinstance(value, torch.Tensor):
|
|
|
+ writer.add_scalar(f'loss/{key}', value.item(), epoch)
|
|
|
+ except Exception as e:
|
|
|
+ print(f"TensorBoard logging error: {e}")
|
|
|
+
|
|
|
+ def train_cfg(self, model: BaseModel, cfg, freeze_config=None): # 新增:支持传入冻结配置
|
|
|
+ cfg = read_yaml(cfg)
|
|
|
+ self.freeze_config = freeze_config or {} # 更新冻结配置
|
|
|
+ self.train(model, **cfg)
|
|
|
+
|
|
|
+ def train(self, model, **kwargs):
|
|
|
+ dataset_train = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='train')
|
|
|
+ train_sampler = torch.utils.data.RandomSampler(dataset_train)
|
|
|
+ train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=4, drop_last=True)
|
|
|
+ train_collate_fn = utils.collate_fn_wirepoint
|
|
|
+ data_loader_train = torch.utils.data.DataLoader(
|
|
|
+ dataset_train, batch_sampler=train_batch_sampler, num_workers=1, collate_fn=train_collate_fn
|
|
|
+ )
|
|
|
+
|
|
|
+ dataset_val = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='val')
|
|
|
+ val_sampler = torch.utils.data.RandomSampler(dataset_val)
|
|
|
+ val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=4, drop_last=True)
|
|
|
+ val_collate_fn = utils.collate_fn_wirepoint
|
|
|
+ data_loader_val = torch.utils.data.DataLoader(
|
|
|
+ dataset_val, batch_sampler=val_batch_sampler, num_workers=1, collate_fn=val_collate_fn
|
|
|
+ )
|
|
|
+
|
|
|
+ train_result_ptath = os.path.join('train_results', datetime.now().strftime("%Y%m%d_%H%M%S"))
|
|
|
+ wts_path = os.path.join(train_result_ptath, 'weights')
|
|
|
+ tb_path = os.path.join(train_result_ptath, 'logs')
|
|
|
+ writer = SummaryWriter(tb_path)
|
|
|
+ model.to(device)
|
|
|
+ # # 加载权重
|
|
|
+ # save_path =r"F:\BaiduNetdiskDownload\r50fpn_wts_e350\best.pth"
|
|
|
+ # model, _ = self.load_best_model(model, None, save_path, device)
|
|
|
+ # 冻结参数
|
|
|
+ # self.freeze_params(model)
|
|
|
+
|
|
|
+ # 初始化优化器(仅训练未冻结参数)
|
|
|
+ optimizer = torch.optim.Adam(
|
|
|
+ filter(lambda p: p.requires_grad, model.parameters()),
|
|
|
+ lr=kwargs['optim']['lr']
|
|
|
+ )
|
|
|
+
|
|
|
+ last_model_path = os.path.join(wts_path, 'last.pth')
|
|
|
+ best_model_path = os.path.join(wts_path, 'best.pth')
|
|
|
+ global_step = 0
|
|
|
+
|
|
|
+ for epoch in range(kwargs['optim']['max_epoch']):
|
|
|
+ print(f"epoch:{epoch}")
|
|
|
+ total_train_loss = 0.0
|
|
|
+ model.train()
|
|
|
+ for imgs, targets in data_loader_train:
|
|
|
+ imgs = move_to_device(imgs, device)
|
|
|
+ targets = move_to_device(targets, device)
|
|
|
+ losses = model(imgs, targets)
|
|
|
+ loss = _loss(losses)
|
|
|
+ total_train_loss += loss.item()
|
|
|
+ optimizer.zero_grad()
|
|
|
+ loss.backward()
|
|
|
+ optimizer.step()
|
|
|
+ self.writer_loss(writer, losses, global_step)
|
|
|
+ global_step += 1
|
|
|
+
|
|
|
+ avg_train_loss = total_train_loss / len(data_loader_train)
|
|
|
+ if epoch == 0:
|
|
|
+ best_loss = avg_train_loss
|
|
|
+ writer.add_scalar('loss/train', avg_train_loss, epoch)
|
|
|
+
|
|
|
+ if os.path.exists(f'{wts_path}/last.pt'):
|
|
|
+ os.remove(f'{wts_path}/last.pt')
|
|
|
+ save_last_model(model, last_model_path, epoch, optimizer)
|
|
|
+ best_loss = save_best_model(model, best_model_path, epoch, avg_train_loss, best_loss, optimizer)
|
|
|
+
|
|
|
+ model.eval()
|
|
|
+ with torch.no_grad():
|
|
|
+ for batch_idx, (imgs, targets) in enumerate(data_loader_val):
|
|
|
+ t_start = time.time()
|
|
|
+ print(f'start to predict:{t_start}')
|
|
|
+ pred = model(self.move_to_device(imgs, self.device))
|
|
|
+ # print(f'pred:{pred}')
|
|
|
+ t_end = time.time()
|
|
|
+ print(f'predict used:{t_end - t_start}')
|
|
|
+ if batch_idx == 0:
|
|
|
+ show_line(imgs[0], pred, epoch, writer)
|
|
|
+ break
|
|
|
+
|
|
|
+
|
|
|
+import torch
|
|
|
+
|
|
|
+from models.line_detect.line_net import linenet_resnet50_fpn, LineNet, linenet_resnet18_fpn
|
|
|
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
+if __name__ == '__main__':
|
|
|
+
|
|
|
+ # model = LineNet('line_net.yaml')
|
|
|
+ model=linenet_resnet50_fpn()
|
|
|
+ #model=linenet_resnet18_fpn()
|
|
|
+ # trainer = Trainer()
|
|
|
+ # trainer.train_cfg(model,cfg='./train.yaml')
|
|
|
+ # model.train_by_cfg(cfg='train.yaml')
|
|
|
+ trainer = Trainer()
|
|
|
+ trainer.train_cfg(model=model, cfg='train.yaml')
|