|
|
@@ -61,11 +61,11 @@ def box_line_optimized(pred):
|
|
|
possible_matches = list(idx.intersection((i[0], i[1], i[2], i[3])))
|
|
|
|
|
|
for j in possible_matches:
|
|
|
- line_j = lines[0, j].cpu().numpy() / 128 * 512 # 调整比例
|
|
|
- if (line_j[0][0] >= i[0] and line_j[1][0] >= i[0] and
|
|
|
- line_j[0][0] <= i[2] and line_j[1][0] <= i[2] and
|
|
|
- line_j[0][1] >= i[1] and line_j[1][1] >= i[1] and
|
|
|
- line_j[0][1] <= i[3] and line_j[1][1] <= i[3]):
|
|
|
+ line_j = lines[0, j].cpu().numpy() / 128 * 512
|
|
|
+ if (line_j[0][1] >= i[0] and line_j[1][1] >= i[0] and # 注意这里交换了x和y
|
|
|
+ line_j[0][1] <= i[2] and line_j[1][1] <= i[2] and
|
|
|
+ line_j[0][0] >= i[1] and line_j[1][0] >= i[1] and
|
|
|
+ line_j[0][0] <= i[3] and line_j[1][0] <= i[3]):
|
|
|
|
|
|
if scores[j] > score_max:
|
|
|
tmp = line_j
|
|
|
@@ -147,7 +147,7 @@ if __name__ == '__main__':
|
|
|
print(f'start to predict:{t_start}')
|
|
|
model = linenet_resnet50_fpn().to(device)
|
|
|
pt_path = r"F:\BaiduNetdiskDownload\resnet50_best_e8.pth"
|
|
|
- img_path = r"I:\datasets\wirenet_1000\images\val\00037040_0.png"
|
|
|
+ img_path = r"I:\datasets\wirenet_1000\images\val\00035148_0.png"
|
|
|
predict(pt_path, model, img_path)
|
|
|
t_end = time.time()
|
|
|
# print(f'predict used:{t_end - t_start}')
|