|
|
@@ -414,7 +414,44 @@ def linedetect_newresnet101fpn(
|
|
|
if num_points is None:
|
|
|
num_points = 3
|
|
|
|
|
|
+ size=768
|
|
|
+ backbone =resnet101fpn(out_channels=256)
|
|
|
+ featmap_names=['0', '1', '2', '3','4','pool']
|
|
|
+ # print(f'featmap_names:{featmap_names}')
|
|
|
+ roi_pooler = MultiScaleRoIAlign(
|
|
|
+ featmap_names=featmap_names,
|
|
|
+ output_size=7,
|
|
|
+ sampling_ratio=2
|
|
|
+ )
|
|
|
+ num_features=len(featmap_names)
|
|
|
+ anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
|
|
|
+ # print(f'anchor_sizes:{anchor_sizes}')
|
|
|
+ aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
|
|
|
+ # print(f'aspect_ratios:{aspect_ratios}')
|
|
|
+
|
|
|
+
|
|
|
+ anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
|
|
|
+
|
|
|
+ model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
|
|
|
|
|
|
+ return model
|
|
|
+
|
|
|
+def linedetect_newresnet152fpn(
|
|
|
+ *,
|
|
|
+
|
|
|
+ num_classes: Optional[int] = None,
|
|
|
+ num_points:Optional[int] = None,
|
|
|
+
|
|
|
+ **kwargs: Any,
|
|
|
+) -> LineDetect:
|
|
|
+ # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
|
|
|
+ # weights_backbone = ResNet50_Weights.verify(weights_backbone)
|
|
|
+ if num_classes is None:
|
|
|
+ num_classes = 3
|
|
|
+ if num_points is None:
|
|
|
+ num_points = 3
|
|
|
+
|
|
|
+ size=1024
|
|
|
backbone =resnet101fpn(out_channels=256)
|
|
|
featmap_names=['0', '1', '2', '3','4','pool']
|
|
|
# print(f'featmap_names:{featmap_names}')
|
|
|
@@ -432,7 +469,7 @@ def linedetect_newresnet101fpn(
|
|
|
|
|
|
anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
|
|
|
|
|
|
- model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
|
|
|
+ model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
|
|
|
|
|
|
return model
|
|
|
|