Prechádzať zdrojové kódy

添加单point检测,可直接调用drawkeypoint

RenLiqiang 5 mesiacov pred
rodič
commit
1881860d02

+ 6 - 6
models/line_detect/train.yaml

@@ -1,7 +1,8 @@
 io:
   logdir: train_results
-#  datadir: /data/share/zyh/5月彩色钢板数据汇总/zjh/a_dataset
-  datadir: /data/share/lm/1-dataset/a_dataset
+  datadir: \\192.168.50.222/share/rlq/datasets/Dataset0709_
+  data_type: rgb
+#  datadir: D:\python\PycharmProjects\data_20250223\0423_
 #  datadir: I:\datasets\wirenet_1000
 
   tensorboard_port: 6000
@@ -10,8 +11,10 @@ io:
 train_params:
   resume_from:
   num_workers: 8
-  batch_size: 4
+  batch_size: 2
   max_epoch: 80000
+#  augmentation: True
+  augmentation: False
   optim:
     name: Adam
     lr: 4.0e-4
@@ -33,6 +36,3 @@ train_params:
           0: False,
           2: False,
           4: False
-
-
-

+ 12 - 8
models/line_detect/train_demo.py

@@ -1,17 +1,21 @@
 import torch
 
-from models.line_detect.line_net import linenet_resnet50_fpn, LineNet, linenet_resnet18_fpn, linenet_resnet101_fpn_v2
-from models.line_detect.trainer import Trainer
+from models.line_detect.line_detect import linedetect_newresnet18fpn, linedetect_resnet50_fpn, linedetect_resnet18_fpn
+
+
+from models.line_net.trainer import Trainer
 
 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 if __name__ == '__main__':
 
     # model = LineNet('line_net.yaml')
-    model=linenet_resnet50_fpn()
+    # model=linenet_resnet50_fpn()
+    # model = linedetect_resnet50_fpn()
     # model=get_line_net_convnext_fpn(num_classes=2).to(device)
-    # model=linenet_resnet18_fpn()
-    # model=linenet_resnet101_fpn_v2()
-    # trainer = Trainer()
-    # trainer.train_cfg(model,cfg='./train.yaml')
-    model.start_train(cfg='train.yaml')
+    # model=linenet_newresnet50fpn()
+    # model = lineDetect_resnet18_fpn()
+
+    # model=linedetect_resnet18_fpn()
+    model=linedetect_newresnet18fpn(num_points=3)
 
+    model.start_train(cfg='train.yaml')

+ 102 - 73
models/line_detect/trainer.py

@@ -5,13 +5,16 @@ from datetime import datetime
 import numpy as np
 import torch
 from matplotlib import pyplot as plt
+from torch.optim.lr_scheduler import ReduceLROnPlateau
 from torch.utils.tensorboard import SummaryWriter
 
-from libs.vision_libs.utils import draw_bounding_boxes
+from libs.vision_libs.utils import draw_bounding_boxes, draw_keypoints
 from models.base.base_model import BaseModel
 from models.base.base_trainer import BaseTrainer
 from models.config.config_tool import read_yaml
-from models.line_detect.dataset_LD import WirePointDataset
+from models.line_detect.line_dataset import LineDataset
+
+from models.line_net.dataset_LD import WirePointDataset
 from models.wirenet.postprocess import postprocess
 from tools import utils
 from torchvision import transforms
@@ -39,6 +42,42 @@ def c(x):
 
 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
+import matplotlib.pyplot as plt
+from PIL import ImageDraw
+from torchvision.transforms import functional as F
+import torch
+
+
+# 由低到高蓝黄红
+def draw_lines_with_scores(tensor_image, lines, scores, width=3, cmap='viridis'):
+    """
+    根据得分对线段着色并绘制
+    :param tensor_image: (3, H, W) uint8 图像
+    :param lines: (N, 2, 2) 每条线 [ [x1,y1], [x2,y2] ]
+    :param scores: (N,) 每条线的得分,范围 [0, 1]
+    :param width: 线宽
+    :param cmap: matplotlib colormap 名称,例如 'viridis', 'jet', 'coolwarm'
+    :return: (3, H, W) uint8 画好线的图像
+    """
+    assert tensor_image.dtype == torch.uint8
+    assert tensor_image.shape[0] == 3
+    assert lines.shape[0] == scores.shape[0]
+
+    # 准备色图
+    colormap = plt.get_cmap(cmap)
+    colors = (colormap(scores.cpu().numpy())[:, :3] * 255).astype('uint8')  # 去掉 alpha 通道
+
+    # 转为 PIL 画图
+    image_pil = F.to_pil_image(tensor_image)
+    draw = ImageDraw.Draw(image_pil)
+
+    for line, color in zip(lines, colors):
+        start = tuple(map(float, line[0][:2].tolist()))
+        end = tuple(map(float, line[1][:2].tolist()))
+        draw.line([start, end], fill=tuple(color), width=width)
+
+    return (F.to_tensor(image_pil) * 255).to(torch.uint8)
+
 
 class Trainer(BaseTrainer):
     def __init__(self, model=None, **kwargs):
@@ -53,6 +92,7 @@ class Trainer(BaseTrainer):
             self.freeze_config = kwargs['train_params']['freeze_params']
             print(f'freeze_config:{self.freeze_config}')
             self.dataset_path = kwargs['io']['datadir']
+            self.data_type = kwargs['io']['data_type']
             self.batch_size = kwargs['train_params']['batch_size']
             self.num_workers = kwargs['train_params']['num_workers']
             self.logdir = kwargs['io']['logdir']
@@ -66,6 +106,7 @@ class Trainer(BaseTrainer):
             self.best_train_model_path = os.path.join(self.wts_path, 'best_train.pth')
             self.best_val_model_path = os.path.join(self.wts_path, 'best_val.pth')
             self.max_epoch = kwargs['train_params']['max_epoch']
+            self.augmentation= kwargs['train_params']["augmentation"]
 
     def move_to_device(self, data, device):
         if isinstance(data, (list, tuple)):
@@ -146,70 +187,43 @@ class Trainer(BaseTrainer):
             print(f"No saved model found at {save_path}")
         return model, optimizer
 
-    def writer_predict_result(self, img, result, epoch):
+
+
+
+
+    def writer_predict_result(self, img, result, epoch,type=1):
         img = img.cpu().detach()
-        img=img[:3]
-        im = img.permute(1, 2, 0)
-        self.writer.add_image("z-ori", (im*255).to(torch.uint8), epoch, dataformats="HWC")
+        im = img.permute(1, 2, 0)  # [512, 512, 3]
+        self.writer.add_image("z-ori", im, epoch, dataformats="HWC")
 
-        boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), result[0]["boxes"],
+        boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), result["boxes"],
                                           colors="yellow", width=1)
-        self.writer.add_image("z-boxes", boxed_image.permute(1, 2, 0), epoch, dataformats="HWC")
-
-        PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5}
-        # print(f'pred[1]:{pred[1]}')
-        heatmaps = result[-2][0]
-        print(f'heatmaps:{heatmaps.shape}')
-        jmap = heatmaps[1: 2].cpu().detach()
-        lmap = heatmaps[2: 3].cpu().detach()
-        self.writer.add_image("z-jmap", jmap, epoch)
-        self.writer.add_image("z-lmap", lmap, epoch)
-        # plt.imshow(lmap)
+
+        # plt.imshow(boxed_image.permute(1, 2, 0).detach().cpu().numpy())
         # plt.show()
-        H = result[-1]['wires']
-        lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2]
-        scores = H["score"][0].cpu().numpy()
-        for i in range(1, len(lines)):
-            if (lines[i] == lines[0]).all():
-                lines = lines[:i]
-                scores = scores[:i]
-                break
-
-        # postprocess lines to remove overlapped lines
-        diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
-        nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False)
-
-        for i, t in enumerate([0]):
-            plt.gca().set_axis_off()
-            plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
-            plt.margins(0, 0)
-            for (a, b), s in zip(nlines, nscores):
-                if s < t:
-                    continue
-                plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s)
-                plt.scatter(a[1], a[0], **PLTOPTS)
-                plt.scatter(b[1], b[0], **PLTOPTS)
-            plt.gca().xaxis.set_major_locator(plt.NullLocator())
-            plt.gca().yaxis.set_major_locator(plt.NullLocator())
-            plt.imshow((im*255).to(torch.uint8))
-            plt.tight_layout()
-            fig = plt.gcf()
-            fig.canvas.draw()
-
-            width, height = fig.get_size_inches() * fig.get_dpi()  # 获取图像尺寸
-            tmp_img = fig.canvas.tostring_argb()
-            tmp_img_np = np.frombuffer(tmp_img, dtype=np.uint8)
-            tmp_img_np = tmp_img_np.reshape(int(height), int(width), 4)
-
-            img_rgb = tmp_img_np[:, :, 1:]  # 提取RGB部分,忽略Alpha通道
-
-            # image_from_plot = np.frombuffer(tmp_img[:,:,1:], dtype=np.uint8).reshape(
-            #     fig.canvas.get_width_height()[::-1] + (3,))
-            plt.close()
-
-            img2 = transforms.ToTensor()(img_rgb)
-
-            self.writer.add_image("z-output", (img2*255).to(torch.uint8), epoch)
+
+        self.writer.add_image("z-obj", boxed_image.permute(1, 2, 0), epoch, dataformats="HWC")
+
+
+        if type==1:
+            keypoint_img = draw_keypoints(boxed_image, result['points'], colors='red', width=3)
+
+            self.writer.add_image("z-output", keypoint_img, epoch)
+        # print("lines shape:", result['lines'].shape)
+
+
+        if type==2:
+            # 用自己写的函数画线段
+            # line_image = draw_lines(boxed_image, result['lines'], color='red', width=3)
+            print(f"shape of linescore:{result['liness_scores'].shape}")
+            scores = result['liness_scores'].mean(dim=1)  # shape: [31]
+
+            line_image = draw_lines_with_scores((img * 255).to(torch.uint8),  result['lines'],scores, width=3, cmap='jet')
+
+            self.writer.add_image("z-output_line", line_image.permute(1, 2, 0), epoch, dataformats="HWC")
+
+
+
 
     def writer_loss(self, losses, epoch, phase='train'):
         try:
@@ -236,8 +250,8 @@ class Trainer(BaseTrainer):
 
         self.init_params(**kwargs)
 
-        dataset_train = WirePointDataset(dataset_path=self.dataset_path, dataset_type='train')
-        dataset_val = WirePointDataset(dataset_path=self.dataset_path, dataset_type='val')
+        dataset_train = LineDataset(dataset_path=self.dataset_path,augmentation=self.augmentation, data_type=self.data_type, dataset_type='train')
+        dataset_val = LineDataset(dataset_path=self.dataset_path,augmentation=False, data_type=self.data_type, dataset_type='val')
 
         train_sampler = torch.utils.data.RandomSampler(dataset_train)
         val_sampler = torch.utils.data.RandomSampler(dataset_val)
@@ -247,7 +261,7 @@ class Trainer(BaseTrainer):
         val_collate_fn = utils.collate_fn
 
         data_loader_train = torch.utils.data.DataLoader(
-            dataset_train, batch_sampler=train_batch_sampler, num_workers=self.num_workers, collate_fn=train_collate_fn
+            dataset_train, batch_sampler=train_batch_sampler,  num_workers=self.num_workers, collate_fn=train_collate_fn
         )
         data_loader_val = torch.utils.data.DataLoader(
             dataset_val, batch_sampler=val_batch_sampler, num_workers=self.num_workers, collate_fn=val_collate_fn
@@ -257,22 +271,29 @@ class Trainer(BaseTrainer):
 
         optimizer = torch.optim.Adam(
             filter(lambda p: p.requires_grad, model.parameters()),
-            lr=kwargs['train_params']['optim']['lr']
+            lr=kwargs['train_params']['optim']['lr'],
+            weight_decay=kwargs['train_params']['optim']['weight_decay'],
+
         )
+        # scheduler = StepLR(optimizer, step_size=10, gamma=0.1)
+        scheduler = ReduceLROnPlateau(optimizer, 'min', patience=30)
 
         for epoch in range(self.max_epoch):
             print(f"train epoch:{epoch}")
 
             model, epoch_train_loss = self.one_epoch(model, data_loader_train, epoch, optimizer)
+            scheduler.step(epoch_train_loss)
 
             # ========== Validation ==========
             with torch.no_grad():
                 model, epoch_val_loss = self.one_epoch(model, data_loader_val, epoch, optimizer, phase='val')
+                scheduler.step(epoch_val_loss)
 
             if epoch==0:
                 best_train_loss = epoch_train_loss
                 best_val_loss = epoch_val_loss
 
+
             self.save_last_model(model,self.last_model_path, epoch, optimizer)
             best_train_loss = self.save_best_model(model, self.best_train_model_path, epoch, epoch_train_loss,
                                                    best_train_loss,
@@ -288,32 +309,40 @@ class Trainer(BaseTrainer):
 
         total_loss = 0
         epoch_step = 0
-        global_step = epoch_step * len(data_loader)
+        global_step = epoch * len(data_loader)
         for imgs, targets in data_loader:
             imgs = self.move_to_device(imgs, device)
             targets = self.move_to_device(targets, device)
             if phase== 'val':
+                result,loss_dict = model(imgs, targets)
+                losses = sum(loss_dict.values()) if loss_dict else torch.tensor(0.0, device=device)
 
-                result,losses = model(imgs, targets)
+                print(f'val losses:{losses}')
+                print(f'val result:{result}')
             else:
-                losses = model(imgs, targets)
+                loss_dict = model(imgs, targets)
+                losses = sum(loss_dict.values()) if loss_dict else torch.tensor(0.0, device=device)
+                print(f'train losses:{losses}')
 
-            loss = _loss(losses)
+            # loss = _loss(losses)
+            loss=losses
             total_loss += loss.item()
             if phase == 'train':
                 optimizer.zero_grad()
                 loss.backward()
                 optimizer.step()
-            self.writer_loss(losses, global_step, phase=phase)
+            self.writer_loss(loss_dict, global_step, phase=phase)
             global_step += 1
 
             if epoch_step == 0 and phase == 'val':
                 t_start = time.time()
                 print(f'start to predict:{t_start}')
                 result = model(self.move_to_device(imgs, self.device))
+                print(f'result:{result}')
                 t_end = time.time()
                 print(f'predict used:{t_end - t_start}')
-                self.writer_predict_result(img=imgs[0], result=result, epoch=epoch)
+                self.writer_predict_result(img=imgs[0], result=result[0], epoch=epoch)
+                epoch_step+=1
 
         avg_loss = total_loss / len(data_loader)
         print(f'{phase}/loss epoch{epoch}:{avg_loss:4f}')
@@ -358,4 +387,4 @@ class Trainer(BaseTrainer):
 
 
 if __name__ == '__main__':
-    print('')
+    print('')