|
|
@@ -432,8 +432,8 @@ def heatmaps_to_keypoints(maps, rois):
|
|
|
def lines_point_pair_loss(line_logits, proposals, gt_lines, line_matched_idxs):
|
|
|
# type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
|
|
|
N, K, H, W = line_logits.shape
|
|
|
- batch_size=len(proposals)
|
|
|
- print(f'lines_point_pair_loss line_logits.shape:{line_logits.shape}')
|
|
|
+ len_proposals=len(proposals)
|
|
|
+ print(f'lines_point_pair_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals}')
|
|
|
if H != W:
|
|
|
raise ValueError(
|
|
|
f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
|
|
|
@@ -1023,6 +1023,7 @@ class RoIHeads(nn.Module):
|
|
|
if self.training:
|
|
|
# during training, only focus on positive boxes
|
|
|
num_images = len(proposals)
|
|
|
+ print(f'num_images:{num_images}')
|
|
|
line_proposals = []
|
|
|
pos_matched_idxs = []
|
|
|
if matched_idxs is None:
|
|
|
@@ -1034,8 +1035,11 @@ class RoIHeads(nn.Module):
|
|
|
pos_matched_idxs.append(matched_idxs[img_id][pos])
|
|
|
else:
|
|
|
if targets is not None:
|
|
|
+
|
|
|
pos_matched_idxs = []
|
|
|
num_images = len(proposals)
|
|
|
+ line_proposals = []
|
|
|
+ print(f'val num_images:{num_images}')
|
|
|
if matched_idxs is None:
|
|
|
raise ValueError("if in trainning, matched_idxs should not be None")
|
|
|
|