123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- # 2025/2/9
- import os
- import numpy as np
- import torch
- from models.config.config_tool import read_yaml
- from models.line_detect.dataset_LD import WirePointDataset
- from tools import utils
- from torch.utils.tensorboard import SummaryWriter
- import matplotlib as mpl
- from models.line_detect.line_net import linenet_resnet50_fpn
- from torchvision.utils import draw_bounding_boxes
- from models.wirenet.postprocess import postprocess
- from torchvision import transforms
- from PIL import Image
- from models.line_detect.postprocess import box_line_, show_
- import matplotlib.pyplot as plt
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- def _loss(losses):
- total_loss = 0
- for i in losses.keys():
- if i != "loss_wirepoint":
- total_loss += losses[i]
- else:
- loss_labels = losses[i]["losses"]
- loss_labels_k = list(loss_labels[0].keys())
- for j, name in enumerate(loss_labels_k):
- loss = loss_labels[0][name].mean()
- total_loss += loss
- return total_loss
- cmap = plt.get_cmap("jet")
- norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
- sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
- sm.set_array([])
- def c(x):
- return sm.to_rgba(x)
- def imshow(im):
- plt.close()
- plt.tight_layout()
- plt.imshow(im)
- plt.colorbar(sm, fraction=0.046)
- plt.xlim([0, im.shape[0]])
- plt.ylim([im.shape[0], 0])
- def show_line(img, pred, epoch, writer):
- im = img.permute(1, 2, 0)
- writer.add_image("ori", im, epoch, dataformats="HWC")
- boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), pred[0]["boxes"],
- colors="yellow", width=1)
- writer.add_image("boxes", boxed_image.permute(1, 2, 0), epoch, dataformats="HWC")
- PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5}
- # print(f'pred[1]:{pred[1]}')
- H = pred[-1]['wires']
- lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2]
- scores = H["score"][0].cpu().numpy()
- for i in range(1, len(lines)):
- if (lines[i] == lines[0]).all():
- lines = lines[:i]
- scores = scores[:i]
- break
- # postprocess lines to remove overlapped lines
- diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
- nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False)
- for i, t in enumerate([0.85]):
- plt.gca().set_axis_off()
- plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
- plt.margins(0, 0)
- for (a, b), s in zip(nlines, nscores):
- if s < t:
- continue
- plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s)
- plt.scatter(a[1], a[0], **PLTOPTS)
- plt.scatter(b[1], b[0], **PLTOPTS)
- plt.gca().xaxis.set_major_locator(plt.NullLocator())
- plt.gca().yaxis.set_major_locator(plt.NullLocator())
- plt.imshow(im)
- plt.tight_layout()
- fig = plt.gcf()
- fig.canvas.draw()
- width, height = fig.get_size_inches() * fig.get_dpi() # 获取图像尺寸
- tmp_img = fig.canvas.tostring_argb()
- tmp_img_np = np.frombuffer(tmp_img, dtype=np.uint8)
- tmp_img_np = tmp_img_np.reshape(int(height), int(width), 4)
- img_rgb = tmp_img_np[:, :, 1:] # 提取RGB部分,忽略Alpha通道
- # image_from_plot = np.frombuffer(tmp_img[:,:,1:], dtype=np.uint8).reshape(
- # fig.canvas.get_width_height()[::-1] + (3,))
- # plt.close()
- img2 = transforms.ToTensor()(img_rgb)
- writer.add_image("z-output", img2, epoch)
- def save_best_model(model, save_path, epoch, current_loss, best_loss, optimizer=None):
- os.makedirs(os.path.dirname(save_path), exist_ok=True)
- if current_loss < best_loss:
- checkpoint = {
- 'epoch': epoch,
- 'model_state_dict': model.state_dict(),
- 'loss': current_loss
- }
- if optimizer is not None:
- checkpoint['optimizer_state_dict'] = optimizer.state_dict()
- torch.save(checkpoint, save_path)
- print(f"Saved best model at epoch {epoch} with loss {current_loss:.4f}")
- return current_loss
- return best_loss
- def save_latest_model(model, save_path, epoch, optimizer=None):
- os.makedirs(os.path.dirname(save_path), exist_ok=True)
- checkpoint = {
- 'epoch': epoch,
- 'model_state_dict': model.state_dict(),
- }
- if optimizer is not None:
- checkpoint['optimizer_state_dict'] = optimizer.state_dict()
- torch.save(checkpoint, save_path)
- def load_best_model(model, optimizer, save_path, device):
- if os.path.exists(save_path):
- checkpoint = torch.load(save_path, map_location=device)
- model.load_state_dict(checkpoint['model_state_dict'])
- if optimizer is not None:
- optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
- epoch = checkpoint['epoch']
- loss = checkpoint['loss']
- print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
- else:
- print(f"No saved model found at {save_path}")
- return model, optimizer
- def predict(self, img, show_boxes=True, show_keypoint=True, show_line=True, save=False, save_path=None):
- self.load_weight('weights/best.pt')
- self.__model.eval()
- if isinstance(img, str):
- img = Image.open(img).convert("RGB")
- # 预处理图像
- img_tensor = self.transforms(img)
- with torch.no_grad():
- predictions = self.__model([img_tensor])
- # 后处理预测结果
- boxes = predictions[0]['boxes'].cpu().numpy()
- keypoints = predictions[0]['keypoints'].cpu().numpy()
- # 可视化预测结果
- if show_boxes or show_keypoint or show_line or save:
- fig, ax = plt.subplots(figsize=(10, 10))
- ax.imshow(np.array(img))
- if show_boxes:
- for box in boxes:
- x0, y0, x1, y1 = box
- ax.add_patch(plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor='yellow', linewidth=1))
- for (a, b) in keypoints:
- if show_keypoint:
- ax.scatter(a[0], a[1], c='c', s=2)
- ax.scatter(b[0], b[1], c='c', s=2)
- if show_line:
- ax.plot([a[0], b[0]], [a[1], b[1]], c='red', linewidth=1)
- if show_boxes or show_keypoint or show_line:
- plt.show()
- if save:
- fig.savefig(save_path)
- print(f"Prediction saved to {save_path}")
- plt.close(fig)
- if __name__ == '__main__':
- cfg = r'./config/wireframe.yaml'
- cfg = read_yaml(cfg)
- print(f'cfg:{cfg}')
- print(cfg['model']['n_dyn_negl'])
- # net = WirepointPredictor()
- dataset_train = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='train')
- train_sampler = torch.utils.data.RandomSampler(dataset_train)
- # test_sampler = torch.utils.data.SequentialSampler(dataset_test)
- train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=2, drop_last=True)
- train_collate_fn = utils.collate_fn_wirepoint
- data_loader_train = torch.utils.data.DataLoader(
- dataset_train, batch_sampler=train_batch_sampler, num_workers=8, collate_fn=train_collate_fn
- )
- dataset_val = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='val')
- val_sampler = torch.utils.data.RandomSampler(dataset_val)
- # test_sampler = torch.utils.data.SequentialSampler(dataset_test)
- val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=2, drop_last=True)
- val_collate_fn = utils.collate_fn_wirepoint
- data_loader_val = torch.utils.data.DataLoader(
- dataset_val, batch_sampler=val_batch_sampler, num_workers=8, collate_fn=val_collate_fn
- )
- model = linenet_resnet50_fpn().to(device)
- optimizer = torch.optim.Adam(model.parameters(), lr=cfg['optim']['lr'])
- writer = SummaryWriter(cfg['io']['logdir'])
- # 加载权重
- save_path = 'logs/pth/best_model.pth'
- model, optimizer = load_best_model(model, optimizer, save_path, device)
- logdir_with_pth = os.path.join(cfg['io']['logdir'], 'pth')
- os.makedirs(logdir_with_pth, exist_ok=True) # 创建目录(如果不存在)
- latest_model_path = os.path.join(logdir_with_pth, 'latest_model.pth')
- best_model_path = os.path.join(logdir_with_pth, 'best_model.pth')
- global_step = 0
- def move_to_device(data, device):
- if isinstance(data, (list, tuple)):
- return type(data)(move_to_device(item, device) for item in data)
- elif isinstance(data, dict):
- return {key: move_to_device(value, device) for key, value in data.items()}
- elif isinstance(data, torch.Tensor):
- return data.to(device)
- else:
- return data # 对于非张量类型的数据不做任何改变
- def writer_loss(writer, losses, epoch):
- try:
- for key, value in losses.items():
- if key == 'loss_wirepoint':
- for subdict in losses['loss_wirepoint']['losses']:
- for subkey, subvalue in subdict.items():
- writer.add_scalar(f'loss/{subkey}',
- subvalue.item() if hasattr(subvalue, 'item') else subvalue,
- epoch)
- elif isinstance(value, torch.Tensor):
- writer.add_scalar(f'loss/{key}', value.item(), epoch)
- except Exception as e:
- print(f"TensorBoard logging error: {e}")
- for epoch in range(cfg['optim']['max_epoch']):
- print(f"epoch:{epoch}")
- model.train()
- total_train_loss = 0.0
- for imgs, targets in data_loader_train:
- losses = model(move_to_device(imgs, device), move_to_device(targets, device))
- # print(losses)
- loss = _loss(losses)
- total_train_loss += loss.item()
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- writer_loss(writer, losses, epoch)
- model.eval()
- with torch.no_grad():
- for batch_idx, (imgs, targets) in enumerate(data_loader_val):
- pred = model(move_to_device(imgs, device))
- # pred_ = box_line_(pred) # 将box与line对应
- # show_(imgs, pred_, epoch, writer)
- if batch_idx == 0:
- show_line(imgs[0], pred, epoch, writer)
- break
- avg_train_loss = total_train_loss / len(data_loader_train)
- writer.add_scalar('loss/train', avg_train_loss, epoch)
- best_loss = 10000
- save_latest_model(
- model,
- latest_model_path,
- epoch,
- optimizer
- )
- best_loss = save_best_model(
- model,
- best_model_path,
- epoch,
- avg_train_loss,
- best_loss,
- optimizer
- )
|