123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- from pathlib import Path
- from typing import Any, Callable, Optional, Tuple
- from PIL import Image
- from .folder import find_classes, make_dataset
- from .utils import download_and_extract_archive, verify_str_arg
- from .vision import VisionDataset
- class Imagenette(VisionDataset):
- """`Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ image classification dataset.
- Args:
- root (string): Root directory of the Imagenette dataset.
- split (string, optional): The dataset split. Supports ``"train"`` (default), and ``"val"``.
- size (string, optional): The image size. Supports ``"full"`` (default), ``"320px"``, and ``"160px"``.
- download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already
- downloaded archives are not downloaded again.
- transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
- version, e.g. ``transforms.RandomCrop``.
- target_transform (callable, optional): A function/transform that takes in the target and transforms it.
- Attributes:
- classes (list): List of the class name tuples.
- class_to_idx (dict): Dict with items (class name, class index).
- wnids (list): List of the WordNet IDs.
- wnid_to_idx (dict): Dict with items (WordNet ID, class index).
- """
- _ARCHIVES = {
- "full": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz", "fe2fc210e6bb7c5664d602c3cd71e612"),
- "320px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3"),
- "160px": ("https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz", "e793b78cc4c9e9a4ccc0c1155377a412"),
- }
- _WNID_TO_CLASS = {
- "n01440764": ("tench", "Tinca tinca"),
- "n02102040": ("English springer", "English springer spaniel"),
- "n02979186": ("cassette player",),
- "n03000684": ("chain saw", "chainsaw"),
- "n03028079": ("church", "church building"),
- "n03394916": ("French horn", "horn"),
- "n03417042": ("garbage truck", "dustcart"),
- "n03425413": ("gas pump", "gasoline pump", "petrol pump", "island dispenser"),
- "n03445777": ("golf ball",),
- "n03888257": ("parachute", "chute"),
- }
- def __init__(
- self,
- root: str,
- split: str = "train",
- size: str = "full",
- download=False,
- transform: Optional[Callable] = None,
- target_transform: Optional[Callable] = None,
- ) -> None:
- super().__init__(root, transform=transform, target_transform=target_transform)
- self._split = verify_str_arg(split, "split", ["train", "val"])
- self._size = verify_str_arg(size, "size", ["full", "320px", "160px"])
- self._url, self._md5 = self._ARCHIVES[self._size]
- self._size_root = Path(self.root) / Path(self._url).stem
- self._image_root = str(self._size_root / self._split)
- if download:
- self._download()
- elif not self._check_exists():
- raise RuntimeError("Dataset not found. You can use download=True to download it.")
- self.wnids, self.wnid_to_idx = find_classes(self._image_root)
- self.classes = [self._WNID_TO_CLASS[wnid] for wnid in self.wnids]
- self.class_to_idx = {
- class_name: idx for wnid, idx in self.wnid_to_idx.items() for class_name in self._WNID_TO_CLASS[wnid]
- }
- self._samples = make_dataset(self._image_root, self.wnid_to_idx, extensions=".jpeg")
- def _check_exists(self) -> bool:
- return self._size_root.exists()
- def _download(self):
- if self._check_exists():
- raise RuntimeError(
- f"The directory {self._size_root} already exists. "
- f"If you want to re-download or re-extract the images, delete the directory."
- )
- download_and_extract_archive(self._url, self.root, md5=self._md5)
- def __getitem__(self, idx: int) -> Tuple[Any, Any]:
- path, label = self._samples[idx]
- image = Image.open(path).convert("RGB")
- if self.transform is not None:
- image = self.transform(image)
- if self.target_transform is not None:
- label = self.target_transform(label)
- return image, label
- def __len__(self) -> int:
- return len(self._samples)
|