123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- import torch
- import matplotlib.pyplot as plt
- import numpy as np
- from torchvision import transforms
- def box_line(pred):
- '''
- :param pred: 预测结果
- :return:
- box与line一一对应
- {'box': [0.0, 34.23157501220703, 151.70858764648438, 125.10173797607422], 'line': array([[ 1.9720564, 81.73457 ],
- [ 1.9933801, 41.730167 ]], dtype=float32)}
- '''
- box_line = [[] for _ in range((len(pred) - 1))]
- for idx, box_ in enumerate(pred[0:-1]):
- box = box_['boxes'] # 是一个tensor
- line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
- score = pred[-1]['wires']['score'][idx]
- for i in box:
- aaa = {}
- aaa['box'] = i.tolist()
- aaa['line'] = []
- score_max = 0.0
- for j in range(len(line)):
- if (line[j][0][0] >= i[0] and line[j][1][0] >= i[0] and line[j][0][0] <= i[2] and
- line[j][1][0] <= i[2] and line[j][0][1] >= i[1] and line[j][1][1] >= i[1] and
- line[j][0][1] <= i[3] and line[j][1][1] <= i[3]):
- if score[j] > score_max:
- aaa['line'] = line[j]
- score_max = score[j]
- box_line[idx].append(aaa)
- def box_line_(pred):
- '''
- 形式同pred
- '''
- for idx, box_ in enumerate(pred[0:-1]):
- box = box_['boxes'] # 是一个tensor
- line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
- score = pred[-1]['wires']['score'][idx]
- line_ = []
- for i in box:
- score_max = 0.0
- tmp = [[0.0, 0.0], [0.0, 0.0]]
- for j in range(len(line)):
- if (line[j][0][0] >= i[0] and line[j][1][0] >= i[0] and line[j][0][0] <= i[2] and
- line[j][1][0] <= i[2] and line[j][0][1] >= i[1] and line[j][1][1] >= i[1] and
- line[j][0][1] <= i[3] and line[j][1][1] <= i[3]):
- if score[j] > score_max:
- tmp = line[j]
- score_max = score[j]
- line_.append(tmp)
- processed_list = torch.tensor(line_)
- pred[idx]['line'] = processed_list
- return pred
- def show_(imgs, pred, epoch, writer):
- col = [
- '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
- '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
- '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
- '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
- '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
- '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
- '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
- '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
- '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
- '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
- '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
- '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
- '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
- '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
- '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
- '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
- '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
- '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
- '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
- '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
- ]
- print(len(col))
- im = imgs[0].permute(1, 2, 0)
- boxes = pred[0]['boxes'].cpu().numpy()
- line = pred[0]['line'].cpu().numpy()
- # 可视化预测结
- fig, ax = plt.subplots(figsize=(10, 10))
- ax.imshow(np.array(im))
- for idx, box in enumerate(boxes):
- x0, y0, x1, y1 = box
- ax.add_patch(
- plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
- for idx, (a, b) in enumerate(line):
- ax.scatter(a[0], a[1], c=col[99 - idx], s=2)
- ax.scatter(b[0], b[1], c=col[99 - idx], s=2)
- ax.plot([a[0], b[0]], [a[1], b[1]], c=col[idx], linewidth=1)
- # 将Matplotlib图像转换为Tensor
- fig.canvas.draw()
- image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(
- fig.canvas.get_width_height()[::-1] + (3,))
- plt.close()
- img2 = transforms.ToTensor()(image_from_plot)
- writer.add_image("all", img2, epoch)
|