123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- from typing import Any, Optional
- import torch
- from torch import nn
- from torchvision.ops import MultiScaleRoIAlign
- from libs.vision_libs.ops import misc as misc_nn_ops
- from libs.vision_libs.transforms._presets import ObjectDetection
- from .roi_heads import RoIHeads
- from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
- from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES
- from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
- from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights
- from libs.vision_libs.models.detection._utils import overwrite_eps
- from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers
- from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
- from models.config.config_tool import read_yaml
- import numpy as np
- import torch.nn.functional as F
- FEATURE_DIM = 8
- def non_maximum_suppression(a):
- ap = F.max_pool2d(a, 3, stride=1, padding=1)
- mask = (a == ap).float().clamp(min=0.0)
- return a * mask
- class LineRCNNPredictor(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- # self.backbone = backbone
- # self.cfg = read_yaml(cfg)
- # self.cfg = read_yaml(r'./config/wireframe.yaml')
- self.cfg = cfg
- self.n_pts0 = self.cfg['n_pts0']
- self.n_pts1 = self.cfg['n_pts1']
- self.n_stc_posl = self.cfg['n_stc_posl']
- self.dim_loi = self.cfg['dim_loi']
- self.use_conv = self.cfg['use_conv']
- self.dim_fc = self.cfg['dim_fc']
- self.n_out_line = self.cfg['n_out_line']
- self.n_out_junc = self.cfg['n_out_junc']
- self.loss_weight = self.cfg['loss_weight']
- self.n_dyn_junc = self.cfg['n_dyn_junc']
- self.eval_junc_thres = self.cfg['eval_junc_thres']
- self.n_dyn_posl = self.cfg['n_dyn_posl']
- self.n_dyn_negl = self.cfg['n_dyn_negl']
- self.n_dyn_othr = self.cfg['n_dyn_othr']
- self.use_cood = self.cfg['use_cood']
- self.use_slop = self.cfg['use_slop']
- self.n_stc_negl = self.cfg['n_stc_negl']
- self.head_size = self.cfg['head_size']
- self.num_class = sum(sum(self.head_size, []))
- self.head_off = np.cumsum([sum(h) for h in self.head_size])
- lambda_ = torch.linspace(0, 1, self.n_pts0)[:, None]
- self.register_buffer("lambda_", lambda_)
- self.do_static_sampling = self.n_stc_posl + self.n_stc_negl > 0
- self.fc1 = nn.Conv2d(256, self.dim_loi, 1)
- scale_factor = self.n_pts0 // self.n_pts1
- if self.use_conv:
- self.pooling = nn.Sequential(
- nn.MaxPool1d(scale_factor, scale_factor),
- Bottleneck1D(self.dim_loi, self.dim_loi),
- )
- self.fc2 = nn.Sequential(
- nn.ReLU(inplace=True), nn.Linear(self.dim_loi * self.n_pts1 + FEATURE_DIM, 1)
- )
- else:
- self.pooling = nn.MaxPool1d(scale_factor, scale_factor)
- self.fc2 = nn.Sequential(
- nn.Linear(self.dim_loi * self.n_pts1 + FEATURE_DIM, self.dim_fc),
- nn.ReLU(inplace=True),
- nn.Linear(self.dim_fc, self.dim_fc),
- nn.ReLU(inplace=True),
- nn.Linear(self.dim_fc, 1),
- )
- self.loss = nn.BCEWithLogitsLoss(reduction="none")
- def forward(self, inputs, features, targets=None):
- # outputs, features = input
- # for out in outputs:
- # print(f'out:{out.shape}')
- # outputs=merge_features(outputs,100)
- batch, channel, row, col = inputs.shape
- # print(f'outputs:{inputs.shape}')
- # print(f'batch:{batch}, channel:{channel}, row:{row}, col:{col}')
- if targets is not None:
- self.training = True
- # print(f'target:{targets}')
- wires_targets = [t["wires"] for t in targets]
- # print(f'wires_target:{wires_targets}')
- # 提取所有 'junc_map', 'junc_offset', 'line_map' 的张量
- junc_maps = [d["junc_map"] for d in wires_targets]
- junc_offsets = [d["junc_offset"] for d in wires_targets]
- line_maps = [d["line_map"] for d in wires_targets]
- junc_map_tensor = torch.stack(junc_maps, dim=0)
- junc_offset_tensor = torch.stack(junc_offsets, dim=0)
- line_map_tensor = torch.stack(line_maps, dim=0)
- wires_meta = {
- "junc_map": junc_map_tensor,
- "junc_offset": junc_offset_tensor,
- # "line_map": line_map_tensor,
- }
- else:
- self.training = False
- t = {
- "junc_coords": torch.zeros(1, 2),
- "jtyp": torch.zeros(1, dtype=torch.uint8),
- "line_pos_idx": torch.zeros(2, 2, dtype=torch.uint8),
- "line_neg_idx": torch.zeros(2, 2, dtype=torch.uint8),
- "junc_map": torch.zeros([1, 1, 128, 128]),
- "junc_offset": torch.zeros([1, 1, 2, 128, 128]),
- }
- wires_targets = [t for b in range(inputs.size(0))]
- wires_meta = {
- "junc_map": torch.zeros([1, 1, 128, 128]),
- "junc_offset": torch.zeros([1, 1, 2, 128, 128]),
- }
- T = wires_meta.copy()
- n_jtyp = T["junc_map"].shape[1]
- offset = self.head_off
- result = {}
- for stack, output in enumerate([inputs]):
- output = output.transpose(0, 1).reshape([-1, batch, row, col]).contiguous()
- # print(f"Stack {stack} output shape: {output.shape}") # 打印每层的输出形状
- jmap = output[0: offset[0]].reshape(n_jtyp, 2, batch, row, col)
- lmap = output[offset[0]: offset[1]].squeeze(0)
- joff = output[offset[1]: offset[2]].reshape(n_jtyp, 2, batch, row, col)
- if stack == 0:
- result["preds"] = {
- "jmap": jmap.permute(2, 0, 1, 3, 4).softmax(2)[:, :, 1],
- "lmap": lmap.sigmoid(),
- "joff": joff.permute(2, 0, 1, 3, 4).sigmoid() - 0.5,
- }
- # visualize_feature_map(jmap[0, 0], title=f"jmap - Stack {stack}")
- # visualize_feature_map(lmap, title=f"lmap - Stack {stack}")
- # visualize_feature_map(joff[0, 0], title=f"joff - Stack {stack}")
- h = result["preds"]
- # print(f'features shape:{features.shape}')
- x = self.fc1(features)
- # print(f'x:{x.shape}')
- n_batch, n_channel, row, col = x.shape
- # print(f'n_batch:{n_batch}, n_channel:{n_channel}, row:{row}, col:{col}')
- xs, ys, fs, ps, idx, jcs = [], [], [], [], [0], []
- for i, meta in enumerate(wires_targets):
- p, label, feat, jc = self.sample_lines(
- meta, h["jmap"][i], h["joff"][i],
- )
- # print(f"p.shape:{p.shape},label:{label.shape},feat:{feat.shape},jc:{len(jc)}")
- ys.append(label)
- if self.training and self.do_static_sampling:
- p = torch.cat([p, meta["lpre"]])
- feat = torch.cat([feat, meta["lpre_feat"]])
- ys.append(meta["lpre_label"])
- del jc
- else:
- jcs.append(jc)
- ps.append(p)
- fs.append(feat)
- p = p[:, 0:1, :] * self.lambda_ + p[:, 1:2, :] * (1 - self.lambda_) - 0.5
- p = p.reshape(-1, 2) # [N_LINE x N_POINT, 2_XY]
- px, py = p[:, 0].contiguous(), p[:, 1].contiguous()
- px0 = px.floor().clamp(min=0, max=127)
- py0 = py.floor().clamp(min=0, max=127)
- px1 = (px0 + 1).clamp(min=0, max=127)
- py1 = (py0 + 1).clamp(min=0, max=127)
- px0l, py0l, px1l, py1l = px0.long(), py0.long(), px1.long(), py1.long()
- # xp: [N_LINE, N_CHANNEL, N_POINT]
- xp = (
- (
- x[i, :, px0l, py0l] * (px1 - px) * (py1 - py)
- + x[i, :, px1l, py0l] * (px - px0) * (py1 - py)
- + x[i, :, px0l, py1l] * (px1 - px) * (py - py0)
- + x[i, :, px1l, py1l] * (px - px0) * (py - py0)
- )
- .reshape(n_channel, -1, self.n_pts0)
- .permute(1, 0, 2)
- )
- xp = self.pooling(xp)
- # print(f'xp.shape:{xp.shape}')
- xs.append(xp)
- idx.append(idx[-1] + xp.shape[0])
- # print(f'idx__:{idx}')
- x, y = torch.cat(xs), torch.cat(ys)
- f = torch.cat(fs)
- x = x.reshape(-1, self.n_pts1 * self.dim_loi)
- # print("Weight dtype:", self.fc2.weight.dtype)
- x = torch.cat([x, f], 1)
- # print("Input dtype:", x.dtype)
- x = x.to(dtype=torch.float32)
- # print("Input dtype1:", x.dtype)
- x = self.fc2(x).flatten()
- # return x,idx,jcs,n_batch,ps,self.n_out_line,self.n_out_junc
- return x, y, idx, jcs, n_batch, ps, self.n_out_line, self.n_out_junc
- # if mode != "training":
- # self.inference(x, idx, jcs, n_batch, ps)
- # return result
- def sample_lines(self, meta, jmap, joff):
- device = jmap.device
- with torch.no_grad():
- junc = meta["junc_coords"].to(device) # [N, 2]
- jtyp = meta["jtyp"].to(device) # [N]
- Lpos = meta["line_pos_idx"].to(device)
- Lneg = meta["line_neg_idx"].to(device)
- n_type = jmap.shape[0]
- jmap = non_maximum_suppression(jmap).reshape(n_type, -1)
- joff = joff.reshape(n_type, 2, -1)
- max_K = self.n_dyn_junc // n_type
- N = len(junc)
- # if mode != "training":
- if not self.training:
- K = min(int((jmap > self.eval_junc_thres).float().sum().item()), max_K)
- else:
- K = min(int(N * 2 + 2), max_K)
- if K < 2:
- K = 2
- device = jmap.device
- # index: [N_TYPE, K]
- score, index = torch.topk(jmap, k=K)
- y = (index // 128).float() + torch.gather(joff[:, 0], 1, index) + 0.5
- x = (index % 128).float() + torch.gather(joff[:, 1], 1, index) + 0.5
- # xy: [N_TYPE, K, 2]
- xy = torch.cat([y[..., None], x[..., None]], dim=-1)
- xy_ = xy[..., None, :]
- del x, y, index
- # dist: [N_TYPE, K, N]
- dist = torch.sum((xy_ - junc) ** 2, -1)
- cost, match = torch.min(dist, -1)
- # xy: [N_TYPE * K, 2]
- # match: [N_TYPE, K]
- for t in range(n_type):
- match[t, jtyp[match[t]] != t] = N
- match[cost > 1.5 * 1.5] = N
- match = match.flatten()
- _ = torch.arange(n_type * K, device=device)
- u, v = torch.meshgrid(_, _)
- u, v = u.flatten(), v.flatten()
- up, vp = match[u], match[v]
- label = Lpos[up, vp]
- # if mode == "training":
- if self.training:
- c = torch.zeros_like(label, dtype=torch.bool)
- # sample positive lines
- cdx = label.nonzero().flatten()
- if len(cdx) > self.n_dyn_posl:
- # print("too many positive lines")
- perm = torch.randperm(len(cdx), device=device)[: self.n_dyn_posl]
- cdx = cdx[perm]
- c[cdx] = 1
- # sample negative lines
- cdx = Lneg[up, vp].nonzero().flatten()
- if len(cdx) > self.n_dyn_negl:
- # print("too many negative lines")
- perm = torch.randperm(len(cdx), device=device)[: self.n_dyn_negl]
- cdx = cdx[perm]
- c[cdx] = 1
- # sample other (unmatched) lines
- cdx = torch.randint(len(c), (self.n_dyn_othr,), device=device)
- c[cdx] = 1
- else:
- c = (u < v).flatten()
- # sample lines
- u, v, label = u[c], v[c], label[c]
- xy = xy.reshape(n_type * K, 2)
- xyu, xyv = xy[u], xy[v]
- u2v = xyu - xyv
- u2v /= torch.sqrt((u2v ** 2).sum(-1, keepdim=True)).clamp(min=1e-6)
- feat = torch.cat(
- [
- xyu / 128 * self.use_cood,
- xyv / 128 * self.use_cood,
- u2v * self.use_slop,
- (u[:, None] > K).float(),
- (v[:, None] > K).float(),
- ],
- 1,
- )
- line = torch.cat([xyu[:, None], xyv[:, None]], 1)
- xy = xy.reshape(n_type, K, 2)
- jcs = [xy[i, score[i] > 0.03] for i in range(n_type)]
- return line, label.float(), feat, jcs
- _COMMON_META = {
- "categories": _COCO_PERSON_CATEGORIES,
- "keypoint_names": _COCO_PERSON_KEYPOINT_NAMES,
- "min_size": (1, 1),
- }
|