123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- from torch.utils.data.dataset import T_co
- from models.base.base_dataset import BaseDataset
- import glob
- import json
- import math
- import os
- import random
- import cv2
- import PIL
- import numpy as np
- import numpy.linalg as LA
- import torch
- from skimage import io
- from torch.utils.data import Dataset
- from torch.utils.data.dataloader import default_collate
- import matplotlib.pyplot as plt
- from models.dataset_tool import masks_to_boxes, read_masks_from_txt_wire, read_masks_from_pixels_wire, adjacency_matrix
- class WirePointDataset(BaseDataset):
- def __init__(self, dataset_path, transforms=None, dataset_type=None, target_type='pixel'):
- super().__init__(dataset_path)
- self.data_path = dataset_path
- print(f'data_path:{dataset_path}')
- self.transforms = transforms
- self.img_path = os.path.join(dataset_path, "images\\" + dataset_type)
- self.lbl_path = os.path.join(dataset_path, "labels\\" + dataset_type)
- self.imgs = os.listdir(self.img_path)
- self.lbls = os.listdir(self.lbl_path)
- self.target_type = target_type
- # self.default_transform = DefaultTransform()
- def __getitem__(self, index) -> T_co:
- img_path = os.path.join(self.img_path, self.imgs[index])
- lbl_path = os.path.join(self.lbl_path, self.imgs[index][:-3] + 'json')
- img = PIL.Image.open(img_path).convert('RGB')
- w, h = img.size
- # wire_labels, target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w))
- target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w))
- if self.transforms:
- img, target = self.transforms(img, target)
- else:
- img = self.default_transform(img)
- # print(f'img:{img}')
- return img, target
- def __len__(self):
- return len(self.imgs)
- def read_target(self, item, lbl_path, shape, extra=None):
- # print(f'lbl_path:{lbl_path}')
- with open(lbl_path, 'r') as file:
- lable_all = json.load(file)
- n_stc_posl = 300
- n_stc_negl = 40
- use_cood = 0
- use_slop = 0
- wire = lable_all["wires"][0] # 字典
- line_pos_coords = np.random.permutation(wire["line_pos_coords"]["content"])[: n_stc_posl] # 不足,有多少取多少
- line_neg_coords = np.random.permutation(wire["line_neg_coords"]["content"])[: n_stc_negl]
- npos, nneg = len(line_pos_coords), len(line_neg_coords)
- lpre = np.concatenate([line_pos_coords, line_neg_coords], 0) # 正负样本坐标合在一起
- for i in range(len(lpre)):
- if random.random() > 0.5:
- lpre[i] = lpre[i, ::-1]
- ldir = lpre[:, 0, :2] - lpre[:, 1, :2]
- ldir /= np.clip(LA.norm(ldir, axis=1, keepdims=True), 1e-6, None)
- feat = [
- lpre[:, :, :2].reshape(-1, 4) / 128 * use_cood,
- ldir * use_slop,
- lpre[:, :, 2],
- ]
- feat = np.concatenate(feat, 1)
- wire_labels = {
- "junc_coords": torch.tensor(wire["junc_coords"]["content"])[:, :2],
- "jtyp": torch.tensor(wire["junc_coords"]["content"])[:, 2].byte(),
- "line_pos_idx": adjacency_matrix(len(wire["junc_coords"]["content"]), wire["line_pos_idx"]["content"]),
- # 真实存在线条的邻接矩阵
- "line_neg_idx": adjacency_matrix(len(wire["junc_coords"]["content"]), wire["line_neg_idx"]["content"]),
- # 不存在线条的临界矩阵
- "lpre": torch.tensor(lpre)[:, :, :2],
- "lpre_label": torch.cat([torch.ones(npos), torch.zeros(nneg)]), # 样本对应标签 1,0
- "lpre_feat": torch.from_numpy(feat),
- "junc_map": torch.tensor(wire['junc_map']["content"]),
- "junc_offset": torch.tensor(wire['junc_offset']["content"]),
- "line_map": torch.tensor(wire['line_map']["content"]),
- }
- h, w = shape
- labels = []
- masks = []
- if self.target_type == 'polygon':
- labels, masks = read_masks_from_txt_wire(lbl_path, shape)
- elif self.target_type == 'pixel':
- labels, masks = read_masks_from_pixels_wire(lbl_path, shape)
- target = {}
- target["boxes"] = masks_to_boxes(torch.stack(masks))
- target["labels"] = torch.stack(labels)
- target["masks"] = torch.stack(masks)
- target["image_id"] = torch.tensor(item)
- # return wire_labels, target
- target["wires"] = wire_labels
- return target
- def show(self, idx):
- img_path = os.path.join(self.img_path, self.imgs[idx])
- lbl_path = os.path.join(self.lbl_path, self.imgs[idx][:-3] + 'json')
- with open(lbl_path, 'r') as file:
- lable_all = json.load(file)
- # 可视化图像和标注
- image = cv2.imread(img_path) # [H,W,3] # 默认为BGR格式
- # print(image.shape)
- # 绘制每个标注的多边形
- # for ann in lable_all["segmentations"]:
- # segmentation = [[x * 512 for x in ann['data']]]
- # # segmentation = [ann['data']]
- # # for i in range(len(ann['data'])):
- # # if i % 2 == 0:
- # # segmentation[0][i] *= image.shape[0]
- # # else:
- # # segmentation[0][i] *= image.shape[0]
- #
- # # if isinstance(segmentation, list):
- # # for seg in segmentation:
- # # poly = np.array(seg).reshape((-1, 2)).astype(int)
- # # cv2.polylines(image, [poly], isClosed=True, color=(0, 255, 0), thickness=2)
- # # cv2.fillPoly(image, [poly], color=(0, 255, 0))
- #
- # # 显示图像
- # cv2.namedWindow('Image with Segmentations', cv2.WINDOW_NORMAL)
- # cv2.imshow('Image with Segmentations', image)
- # cv2.waitKey(0)
- # cv2.destroyAllWindows()
- def show_img(self,img_path):
- pass
|