trainer.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219
  1. import math
  2. import os
  3. import sys
  4. from datetime import datetime
  5. import torch
  6. import torchvision
  7. from torch.utils.tensorboard import SummaryWriter
  8. from torchvision.models.detection import MaskRCNN_ResNet50_FPN_V2_Weights
  9. from models.config.config_tool import read_yaml
  10. from models.ins.maskrcnn_dataset import MaskRCNNDataset
  11. from tools import utils, presets
  12. def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None):
  13. model.train()
  14. metric_logger = utils.MetricLogger(delimiter=" ")
  15. metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
  16. header = f"Epoch: [{epoch}]"
  17. lr_scheduler = None
  18. if epoch == 0:
  19. warmup_factor = 1.0 / 1000
  20. warmup_iters = min(1000, len(data_loader) - 1)
  21. lr_scheduler = torch.optim.lr_scheduler.LinearLR(
  22. optimizer, start_factor=warmup_factor, total_iters=warmup_iters
  23. )
  24. for images, targets in metric_logger.log_every(data_loader, print_freq, header):
  25. print(f'images:{images}')
  26. images = list(image.to(device) for image in images)
  27. targets = [{k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in t.items()} for t in targets]
  28. with torch.cuda.amp.autocast(enabled=scaler is not None):
  29. loss_dict = model(images, targets)
  30. losses = sum(loss for loss in loss_dict.values())
  31. # reduce losses over all GPUs for logging purposes
  32. loss_dict_reduced = utils.reduce_dict(loss_dict)
  33. losses_reduced = sum(loss for loss in loss_dict_reduced.values())
  34. loss_value = losses_reduced.item()
  35. if not math.isfinite(loss_value):
  36. print(f"Loss is {loss_value}, stopping training")
  37. print(loss_dict_reduced)
  38. sys.exit(1)
  39. optimizer.zero_grad()
  40. if scaler is not None:
  41. scaler.scale(losses).backward()
  42. scaler.step(optimizer)
  43. scaler.update()
  44. else:
  45. losses.backward()
  46. optimizer.step()
  47. if lr_scheduler is not None:
  48. lr_scheduler.step()
  49. metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
  50. metric_logger.update(lr=optimizer.param_groups[0]["lr"])
  51. return metric_logger
  52. def load_train_parameter(cfg):
  53. parameters = read_yaml(cfg)
  54. return parameters
  55. def train_cfg(model, cfg):
  56. parameters = read_yaml(cfg)
  57. print(f'train parameters:{parameters}')
  58. train(model, **parameters)
  59. def train(model, **kwargs):
  60. # 默认参数
  61. default_params = {
  62. 'dataset_path': '/path/to/dataset',
  63. 'num_classes': 10,
  64. 'opt': 'adamw',
  65. 'batch_size': 2,
  66. 'epochs': 10,
  67. 'lr': 0.005,
  68. 'momentum': 0.9,
  69. 'weight_decay': 1e-4,
  70. 'lr_step_size': 3,
  71. 'lr_gamma': 0.1,
  72. 'num_workers': 4,
  73. 'print_freq': 10,
  74. 'target_type': 'polygon',
  75. 'enable_logs': True,
  76. 'augmentation': False,
  77. 'checkpoint':None
  78. }
  79. # 更新默认参数
  80. for key, value in kwargs.items():
  81. if key in default_params:
  82. default_params[key] = value
  83. else:
  84. raise ValueError(f"Unknown argument: {key}")
  85. # 解析参数
  86. dataset_path = default_params['dataset_path']
  87. num_classes = default_params['num_classes']
  88. batch_size = default_params['batch_size']
  89. epochs = default_params['epochs']
  90. lr = default_params['lr']
  91. momentum = default_params['momentum']
  92. weight_decay = default_params['weight_decay']
  93. lr_step_size = default_params['lr_step_size']
  94. lr_gamma = default_params['lr_gamma']
  95. num_workers = default_params['num_workers']
  96. print_freq = default_params['print_freq']
  97. target_type = default_params['target_type']
  98. augmentation = default_params['augmentation']
  99. # 设置设备
  100. device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
  101. train_result_ptath = os.path.join('train_results', datetime.now().strftime("%Y%m%d_%H%M%S"))
  102. wts_path = os.path.join(train_result_ptath, 'weights')
  103. tb_path = os.path.join(train_result_ptath, 'logs')
  104. writer = SummaryWriter(tb_path)
  105. transforms = None
  106. # default_transforms = MaskRCNN_ResNet50_FPN_V2_Weights.DEFAULT.transforms()
  107. if augmentation:
  108. transforms = get_transform(is_train=True)
  109. print(f'transforms:{transforms}')
  110. if not os.path.exists('train_results'):
  111. os.mkdir('train_results')
  112. model.to(device)
  113. optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
  114. dataset = MaskRCNNDataset(dataset_path=dataset_path,
  115. transforms=transforms, dataset_type='train', target_type=target_type)
  116. dataset_test = MaskRCNNDataset(dataset_path=dataset_path, transforms=None,
  117. dataset_type='val')
  118. train_sampler = torch.utils.data.RandomSampler(dataset)
  119. test_sampler = torch.utils.data.SequentialSampler(dataset_test)
  120. train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size, drop_last=True)
  121. train_collate_fn = utils.collate_fn
  122. data_loader = torch.utils.data.DataLoader(
  123. dataset, batch_sampler=train_batch_sampler, num_workers=num_workers, collate_fn=train_collate_fn
  124. )
  125. # data_loader_test = torch.utils.data.DataLoader(
  126. # dataset_test, batch_size=1, sampler=test_sampler, num_workers=num_workers, collate_fn=utils.collate_fn
  127. # )
  128. img_results_path = os.path.join(train_result_ptath, 'img_results')
  129. if os.path.exists(train_result_ptath):
  130. pass
  131. # os.remove(train_result_ptath)
  132. else:
  133. os.mkdir(train_result_ptath)
  134. if os.path.exists(train_result_ptath):
  135. os.mkdir(wts_path)
  136. os.mkdir(img_results_path)
  137. for epoch in range(epochs):
  138. metric_logger = train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, None)
  139. losses = metric_logger.meters['loss'].global_avg
  140. print(f'epoch {epoch}:loss:{losses}')
  141. if os.path.exists(f'{wts_path}/last.pt'):
  142. os.remove(f'{wts_path}/last.pt')
  143. torch.save(model.state_dict(), f'{wts_path}/last.pt')
  144. write_metric_logs(epoch, metric_logger, writer)
  145. if epoch == 0:
  146. best_loss = losses;
  147. if best_loss >= losses:
  148. best_loss = losses
  149. if os.path.exists(f'{wts_path}/best.pt'):
  150. os.remove(f'{wts_path}/best.pt')
  151. torch.save(model.state_dict(), f'{wts_path}/best.pt')
  152. def get_transform(is_train, **kwargs):
  153. default_params = {
  154. 'augmentation': 'multiscale',
  155. 'backend': 'tensor',
  156. 'use_v2': False,
  157. }
  158. # 更新默认参数
  159. for key, value in kwargs.items():
  160. if key in default_params:
  161. default_params[key] = value
  162. else:
  163. raise ValueError(f"Unknown argument: {key}")
  164. # 解析参数
  165. augmentation = default_params['augmentation']
  166. backend = default_params['backend']
  167. use_v2 = default_params['use_v2']
  168. if is_train:
  169. return presets.DetectionPresetTrain(
  170. data_augmentation=augmentation, backend=backend, use_v2=use_v2
  171. )
  172. # elif weights and test_only:
  173. # weights = torchvision.models.get_weight(args.weights)
  174. # trans = weights.transforms()
  175. # return lambda img, target: (trans(img), target)
  176. else:
  177. return presets.DetectionPresetEval(backend=backend, use_v2=use_v2)
  178. def write_metric_logs(epoch, metric_logger, writer):
  179. writer.add_scalar(f'loss_classifier:', metric_logger.meters['loss_classifier'].global_avg, epoch)
  180. writer.add_scalar(f'loss_box_reg:', metric_logger.meters['loss_box_reg'].global_avg, epoch)
  181. writer.add_scalar(f'loss_mask:', metric_logger.meters['loss_mask'].global_avg, epoch)
  182. writer.add_scalar(f'loss_objectness:', metric_logger.meters['loss_objectness'].global_avg, epoch)
  183. writer.add_scalar(f'loss_rpn_box_reg:', metric_logger.meters['loss_rpn_box_reg'].global_avg, epoch)
  184. writer.add_scalar(f'train loss:', metric_logger.meters['loss'].global_avg, epoch)