123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- import torch
- from torch.utils.tensorboard import SummaryWriter
- from models.base.base_trainer import BaseTrainer
- from models.config.config_tool import read_yaml
- from models.line_detect.dataset_LD import WirePointDataset
- from utils.log_util import show_line
- from tools import utils
- def _loss(losses):
- total_loss = 0
- for i in losses.keys():
- if i != "loss_wirepoint":
- total_loss += losses[i]
- else:
- loss_labels = losses[i]["losses"]
- loss_labels_k = list(loss_labels[0].keys())
- for j, name in enumerate(loss_labels_k):
- loss = loss_labels[0][name].mean()
- total_loss += loss
- return total_loss
- class Trainer(BaseTrainer):
- def __init__(self, model=None,
- dataset=None,
- device='cuda',
- **kwargs):
- super().__init__(model,dataset,device,**kwargs)
- def move_to_device(self, data, device):
- if isinstance(data, (list, tuple)):
- return type(data)(self.move_to_device(item, device) for item in data)
- elif isinstance(data, dict):
- return {key: self.move_to_device(value, device) for key, value in data.items()}
- elif isinstance(data, torch.Tensor):
- return data.to(device)
- else:
- return data # 对于非张量类型的数据不做任何改变
- def writer_loss(self, writer, losses, epoch):
- try:
- for key, value in losses.items():
- if key == 'loss_wirepoint':
- for subdict in losses['loss_wirepoint']['losses']:
- for subkey, subvalue in subdict.items():
- writer.add_scalar(f'loss/{subkey}',
- subvalue.item() if hasattr(subvalue, 'item') else subvalue,
- epoch)
- elif isinstance(value, torch.Tensor):
- writer.add_scalar(f'loss/{key}', value.item(), epoch)
- except Exception as e:
- print(f"TensorBoard logging error: {e}")
- def train_cfg(self, model, cfg):
- # cfg = r'./config/wireframe.yaml'
- cfg = read_yaml(cfg)
- print(f'cfg:{cfg}')
- print(cfg['model']['n_dyn_negl'])
- self.train(model, **cfg)
- def train(self, model, **cfg):
- dataset_train = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='train')
- train_sampler = torch.utils.data.RandomSampler(dataset_train)
- # test_sampler = torch.utils.data.SequentialSampler(dataset_test)
- train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=2, drop_last=True)
- train_collate_fn = utils.collate_fn_wirepoint
- data_loader_train = torch.utils.data.DataLoader(
- dataset_train, batch_sampler=train_batch_sampler, num_workers=8, collate_fn=train_collate_fn
- )
- dataset_val = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='val')
- val_sampler = torch.utils.data.RandomSampler(dataset_val)
- # test_sampler = torch.utils.data.SequentialSampler(dataset_test)
- val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=2, drop_last=True)
- val_collate_fn = utils.collate_fn_wirepoint
- data_loader_val = torch.utils.data.DataLoader(
- dataset_val, batch_sampler=val_batch_sampler, num_workers=8, collate_fn=val_collate_fn
- )
- # model = linenet_resnet50_fpn().to(self.device)
- optimizer = torch.optim.Adam(model.parameters(), lr=cfg['optim']['lr'])
- writer = SummaryWriter(cfg['io']['logdir'])
- for epoch in range(cfg['optim']['max_epoch']):
- print(f"epoch:{epoch}")
- model.train()
- for imgs, targets in data_loader_train:
- losses = model(self.move_to_device(imgs, self.device), self.move_to_device(targets, self.device))
- # print(losses)
- loss = _loss(losses)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- self.writer_loss(writer, losses, epoch)
- model.eval()
- with torch.no_grad():
- for batch_idx, (imgs, targets) in enumerate(data_loader_val):
- pred = model(self.move_to_device(imgs, self.device))
- if batch_idx == 0:
- show_line(imgs[0], pred, epoch, writer)
- break
|