line_net.yaml 1.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. model:
  2. image:
  3. mean: [109.730, 103.832, 98.681]
  4. stddev: [22.275, 22.124, 23.229]
  5. batch_size: 4
  6. batch_size_eval: 2
  7. # backbone multi-task parameters
  8. head_size: [[2], [1], [2]]
  9. loss_weight:
  10. jmap: 8.0
  11. lmap: 0.5
  12. joff: 0.25
  13. lpos: 1
  14. lneg: 1
  15. boxes: 1.0
  16. # backbone parameters
  17. backbone: resnet50_fpn
  18. # backbone: unet
  19. depth: 4
  20. num_stacks: 1
  21. num_blocks: 1
  22. num_classes: 2
  23. # sampler parameters
  24. ## static sampler
  25. n_stc_posl: 300
  26. n_stc_negl: 40
  27. ## dynamic sampler
  28. n_dyn_junc: 300
  29. n_dyn_posl: 300
  30. n_dyn_negl: 80
  31. n_dyn_othr: 600
  32. # LOIPool layer parameters
  33. n_pts0: 32
  34. n_pts1: 8
  35. # line verification network parameters
  36. dim_loi: 128
  37. dim_fc: 1024
  38. # maximum junction and line outputs
  39. n_out_junc: 250
  40. n_out_line: 2500
  41. # additional ablation study parameters
  42. use_cood: 0
  43. use_slop: 0
  44. use_conv: 0
  45. # junction threashold for evaluation (See #5)
  46. eval_junc_thres: 0.008
  47. optim:
  48. name: Adam
  49. lr: 4.0e-4
  50. amsgrad: True
  51. weight_decay: 1.0e-4
  52. max_epoch: 1000
  53. lr_decay_epoch: 10