123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- import itertools
- import random
- from collections import defaultdict
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from lcnn.config import M
- FEATURE_DIM = 8
- class LineVectorizer(nn.Module):
- def __init__(self, backbone):
- super().__init__()
- self.backbone = backbone
- lambda_ = torch.linspace(0, 1, M.n_pts0)[:, None]
- self.register_buffer("lambda_", lambda_)
- self.do_static_sampling = M.n_stc_posl + M.n_stc_negl > 0
- self.fc1 = nn.Conv2d(256, M.dim_loi, 1)
- scale_factor = M.n_pts0 // M.n_pts1
- if M.use_conv:
- self.pooling = nn.Sequential(
- nn.MaxPool1d(scale_factor, scale_factor),
- Bottleneck1D(M.dim_loi, M.dim_loi),
- )
- self.fc2 = nn.Sequential(
- nn.ReLU(inplace=True), nn.Linear(M.dim_loi * M.n_pts1 + FEATURE_DIM, 1)
- )
- else:
- self.pooling = nn.MaxPool1d(scale_factor, scale_factor)
- self.fc2 = nn.Sequential(
- nn.Linear(M.dim_loi * M.n_pts1 + FEATURE_DIM, M.dim_fc),
- nn.ReLU(inplace=True),
- nn.Linear(M.dim_fc, M.dim_fc),
- nn.ReLU(inplace=True),
- nn.Linear(M.dim_fc, 1),
- )
- self.loss = nn.BCEWithLogitsLoss(reduction="none")
- def forward(self, input_dict):
- result = self.backbone(input_dict)
- h = result["preds"]
- x = self.fc1(result["feature"])
- n_batch, n_channel, row, col = x.shape
- xs, ys, fs, ps, idx, jcs = [], [], [], [], [0], []
- for i, meta in enumerate(input_dict["meta"]):
- p, label, feat, jc = self.sample_lines(
- meta, h["jmap"][i], h["joff"][i], input_dict["mode"]
- )
- # print("p.shape:", p.shape)
- ys.append(label)
- if input_dict["mode"] == "training" and self.do_static_sampling:
- p = torch.cat([p, meta["lpre"]])
- feat = torch.cat([feat, meta["lpre_feat"]])
- ys.append(meta["lpre_label"])
- del jc
- else:
- jcs.append(jc)
- ps.append(p)
- fs.append(feat)
- p = p[:, 0:1, :] * self.lambda_ + p[:, 1:2, :] * (1 - self.lambda_) - 0.5
- p = p.reshape(-1, 2) # [N_LINE x N_POINT, 2_XY]
- px, py = p[:, 0].contiguous(), p[:, 1].contiguous()
- px0 = px.floor().clamp(min=0, max=127)
- py0 = py.floor().clamp(min=0, max=127)
- px1 = (px0 + 1).clamp(min=0, max=127)
- py1 = (py0 + 1).clamp(min=0, max=127)
- px0l, py0l, px1l, py1l = px0.long(), py0.long(), px1.long(), py1.long()
- # xp: [N_LINE, N_CHANNEL, N_POINT]
- xp = (
- (
- x[i, :, px0l, py0l] * (px1 - px) * (py1 - py)
- + x[i, :, px1l, py0l] * (px - px0) * (py1 - py)
- + x[i, :, px0l, py1l] * (px1 - px) * (py - py0)
- + x[i, :, px1l, py1l] * (px - px0) * (py - py0)
- )
- .reshape(n_channel, -1, M.n_pts0)
- .permute(1, 0, 2)
- )
- xp = self.pooling(xp)
- xs.append(xp)
- idx.append(idx[-1] + xp.shape[0])
- x, y = torch.cat(xs), torch.cat(ys)
- f = torch.cat(fs)
- x = x.reshape(-1, M.n_pts1 * M.dim_loi)
- x = torch.cat([x, f], 1)
- x = self.fc2(x.float()).flatten()
- if input_dict["mode"] != "training":
- p = torch.cat(ps)
- s = torch.sigmoid(x)
- b = s > 0.5
- lines = []
- score = []
- for i in range(n_batch):
- p0 = p[idx[i]: idx[i + 1]]
- s0 = s[idx[i]: idx[i + 1]]
- mask = b[idx[i]: idx[i + 1]]
- p0 = p0[mask]
- s0 = s0[mask]
- if len(p0) == 0:
- lines.append(torch.zeros([1, M.n_out_line, 2, 2], device=p.device))
- score.append(torch.zeros([1, M.n_out_line], device=p.device))
- else:
- arg = torch.argsort(s0, descending=True)
- p0, s0 = p0[arg], s0[arg]
- lines.append(p0[None, torch.arange(M.n_out_line) % len(p0)])
- score.append(s0[None, torch.arange(M.n_out_line) % len(s0)])
- for j in range(len(jcs[i])):
- if len(jcs[i][j]) == 0:
- jcs[i][j] = torch.zeros([M.n_out_junc, 2], device=p.device)
- jcs[i][j] = jcs[i][j][
- None, torch.arange(M.n_out_junc) % len(jcs[i][j])
- ]
- result["preds"]["lines"] = torch.cat(lines)
- result["preds"]["score"] = torch.cat(score)
- result["preds"]["juncs"] = torch.cat([jcs[i][0] for i in range(n_batch)])
- # print(result)
- result["box"] = result['aaa']
- del result['aaa']
- if len(jcs[i]) > 1:
- result["preds"]["junts"] = torch.cat(
- [jcs[i][1] for i in range(n_batch)]
- )
- if input_dict["mode"] != "testing":
- y = torch.cat(ys)
- loss = self.loss(x, y)
- lpos_mask, lneg_mask = y, 1 - y
- loss_lpos, loss_lneg = loss * lpos_mask, loss * lneg_mask
- def sum_batch(x):
- xs = [x[idx[i]: idx[i + 1]].sum()[None] for i in range(n_batch)]
- return torch.cat(xs)
- lpos = sum_batch(loss_lpos) / sum_batch(lpos_mask).clamp(min=1)
- lneg = sum_batch(loss_lneg) / sum_batch(lneg_mask).clamp(min=1)
- result["losses"][0]["lpos"] = lpos * M.loss_weight["lpos"]
- result["losses"][0]["lneg"] = lneg * M.loss_weight["lneg"]
- if input_dict["mode"] == "training":
- for i in result["aaa"].keys():
- result["losses"][0][i] = result["aaa"][i]
- del result["preds"]
- return result
- def sample_lines(self, meta, jmap, joff, mode):
- with torch.no_grad():
- junc = meta["junc_coords"] # [N, 2]
- jtyp = meta["jtyp"] # [N]
- Lpos = meta["line_pos_idx"]
- Lneg = meta["line_neg_idx"]
- n_type = jmap.shape[0]
- jmap = non_maximum_suppression(jmap).reshape(n_type, -1)
- joff = joff.reshape(n_type, 2, -1)
- max_K = M.n_dyn_junc // n_type
- N = len(junc)
- if mode != "training":
- K = min(int((jmap > M.eval_junc_thres).float().sum().item()), max_K)
- else:
- K = min(int(N * 2 + 2), max_K)
- if K < 2:
- K = 2
- device = jmap.device
- # index: [N_TYPE, K]
- score, index = torch.topk(jmap, k=K)
- y = (index // 128).float() + torch.gather(joff[:, 0], 1, index) + 0.5
- x = (index % 128).float() + torch.gather(joff[:, 1], 1, index) + 0.5
- # xy: [N_TYPE, K, 2]
- xy = torch.cat([y[..., None], x[..., None]], dim=-1)
- xy_ = xy[..., None, :]
- del x, y, index
- # dist: [N_TYPE, K, N]
- dist = torch.sum((xy_ - junc) ** 2, -1)
- cost, match = torch.min(dist, -1)
- # xy: [N_TYPE * K, 2]
- # match: [N_TYPE, K]
- for t in range(n_type):
- match[t, jtyp[match[t]] != t] = N
- match[cost > 1.5 * 1.5] = N
- match = match.flatten()
- _ = torch.arange(n_type * K, device=device)
- u, v = torch.meshgrid(_, _)
- u, v = u.flatten(), v.flatten()
- up, vp = match[u], match[v]
- label = Lpos[up, vp]
- if mode == "training":
- c = torch.zeros_like(label, dtype=torch.bool)
- # sample positive lines
- cdx = label.nonzero().flatten()
- if len(cdx) > M.n_dyn_posl:
- # print("too many positive lines")
- perm = torch.randperm(len(cdx), device=device)[: M.n_dyn_posl]
- cdx = cdx[perm]
- c[cdx] = 1
- # sample negative lines
- cdx = Lneg[up, vp].nonzero().flatten()
- if len(cdx) > M.n_dyn_negl:
- # print("too many negative lines")
- perm = torch.randperm(len(cdx), device=device)[: M.n_dyn_negl]
- cdx = cdx[perm]
- c[cdx] = 1
- # sample other (unmatched) lines
- cdx = torch.randint(len(c), (M.n_dyn_othr,), device=device)
- c[cdx] = 1
- else:
- c = (u < v).flatten()
- # sample lines
- u, v, label = u[c], v[c], label[c]
- xy = xy.reshape(n_type * K, 2)
- xyu, xyv = xy[u], xy[v]
- u2v = xyu - xyv
- u2v /= torch.sqrt((u2v ** 2).sum(-1, keepdim=True)).clamp(min=1e-6)
- feat = torch.cat(
- [
- xyu / 128 * M.use_cood,
- xyv / 128 * M.use_cood,
- u2v * M.use_slop,
- (u[:, None] > K).float(),
- (v[:, None] > K).float(),
- ],
- 1,
- )
- line = torch.cat([xyu[:, None], xyv[:, None]], 1)
- xy = xy.reshape(n_type, K, 2)
- jcs = [xy[i, score[i] > 0.03] for i in range(n_type)]
- return line, label.float(), feat, jcs
- def non_maximum_suppression(a):
- ap = F.max_pool2d(a, 3, stride=1, padding=1)
- mask = (a == ap).float().clamp(min=0.0)
- return a * mask
- class Bottleneck1D(nn.Module):
- def __init__(self, inplanes, outplanes):
- super(Bottleneck1D, self).__init__()
- planes = outplanes // 2
- self.op = nn.Sequential(
- nn.BatchNorm1d(inplanes),
- nn.ReLU(inplace=True),
- nn.Conv1d(inplanes, planes, kernel_size=1),
- nn.BatchNorm1d(planes),
- nn.ReLU(inplace=True),
- nn.Conv1d(planes, planes, kernel_size=3, padding=1),
- nn.BatchNorm1d(planes),
- nn.ReLU(inplace=True),
- nn.Conv1d(planes, outplanes, kernel_size=1),
- )
- def forward(self, x):
- return x + self.op(x)
|