123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- from functools import partial
- from typing import Any, Optional
- import torch
- import torch.nn as nn
- import torch.nn.init as init
- from ..transforms._presets import ImageClassification
- from ..utils import _log_api_usage_once
- from ._api import register_model, Weights, WeightsEnum
- from ._meta import _IMAGENET_CATEGORIES
- from ._utils import _ovewrite_named_param, handle_legacy_interface
- __all__ = ["SqueezeNet", "SqueezeNet1_0_Weights", "SqueezeNet1_1_Weights", "squeezenet1_0", "squeezenet1_1"]
- class Fire(nn.Module):
- def __init__(self, inplanes: int, squeeze_planes: int, expand1x1_planes: int, expand3x3_planes: int) -> None:
- super().__init__()
- self.inplanes = inplanes
- self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
- self.squeeze_activation = nn.ReLU(inplace=True)
- self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1)
- self.expand1x1_activation = nn.ReLU(inplace=True)
- self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1)
- self.expand3x3_activation = nn.ReLU(inplace=True)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.squeeze_activation(self.squeeze(x))
- return torch.cat(
- [self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], 1
- )
- class SqueezeNet(nn.Module):
- def __init__(self, version: str = "1_0", num_classes: int = 1000, dropout: float = 0.5) -> None:
- super().__init__()
- _log_api_usage_once(self)
- self.num_classes = num_classes
- if version == "1_0":
- self.features = nn.Sequential(
- nn.Conv2d(3, 96, kernel_size=7, stride=2),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
- Fire(96, 16, 64, 64),
- Fire(128, 16, 64, 64),
- Fire(128, 32, 128, 128),
- nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
- Fire(256, 32, 128, 128),
- Fire(256, 48, 192, 192),
- Fire(384, 48, 192, 192),
- Fire(384, 64, 256, 256),
- nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
- Fire(512, 64, 256, 256),
- )
- elif version == "1_1":
- self.features = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=3, stride=2),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
- Fire(64, 16, 64, 64),
- Fire(128, 16, 64, 64),
- nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
- Fire(128, 32, 128, 128),
- Fire(256, 32, 128, 128),
- nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
- Fire(256, 48, 192, 192),
- Fire(384, 48, 192, 192),
- Fire(384, 64, 256, 256),
- Fire(512, 64, 256, 256),
- )
- else:
- # FIXME: Is this needed? SqueezeNet should only be called from the
- # FIXME: squeezenet1_x() functions
- # FIXME: This checking is not done for the other models
- raise ValueError(f"Unsupported SqueezeNet version {version}: 1_0 or 1_1 expected")
- # Final convolution is initialized differently from the rest
- final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
- self.classifier = nn.Sequential(
- nn.Dropout(p=dropout), final_conv, nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1))
- )
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- if m is final_conv:
- init.normal_(m.weight, mean=0.0, std=0.01)
- else:
- init.kaiming_uniform_(m.weight)
- if m.bias is not None:
- init.constant_(m.bias, 0)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.features(x)
- x = self.classifier(x)
- return torch.flatten(x, 1)
- def _squeezenet(
- version: str,
- weights: Optional[WeightsEnum],
- progress: bool,
- **kwargs: Any,
- ) -> SqueezeNet:
- if weights is not None:
- _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
- model = SqueezeNet(version, **kwargs)
- if weights is not None:
- model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
- return model
- _COMMON_META = {
- "categories": _IMAGENET_CATEGORIES,
- "recipe": "https://github.com/pytorch/vision/pull/49#issuecomment-277560717",
- "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
- }
- class SqueezeNet1_0_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "min_size": (21, 21),
- "num_params": 1248424,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 58.092,
- "acc@5": 80.420,
- }
- },
- "_ops": 0.819,
- "_file_size": 4.778,
- },
- )
- DEFAULT = IMAGENET1K_V1
- class SqueezeNet1_1_Weights(WeightsEnum):
- IMAGENET1K_V1 = Weights(
- url="https://download.pytorch.org/models/squeezenet1_1-b8a52dc0.pth",
- transforms=partial(ImageClassification, crop_size=224),
- meta={
- **_COMMON_META,
- "min_size": (17, 17),
- "num_params": 1235496,
- "_metrics": {
- "ImageNet-1K": {
- "acc@1": 58.178,
- "acc@5": 80.624,
- }
- },
- "_ops": 0.349,
- "_file_size": 4.729,
- },
- )
- DEFAULT = IMAGENET1K_V1
- @register_model()
- @handle_legacy_interface(weights=("pretrained", SqueezeNet1_0_Weights.IMAGENET1K_V1))
- def squeezenet1_0(
- *, weights: Optional[SqueezeNet1_0_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> SqueezeNet:
- """SqueezeNet model architecture from the `SqueezeNet: AlexNet-level
- accuracy with 50x fewer parameters and <0.5MB model size
- <https://arxiv.org/abs/1602.07360>`_ paper.
- Args:
- weights (:class:`~torchvision.models.SqueezeNet1_0_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.SqueezeNet1_0_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.SqueezeNet1_0_Weights
- :members:
- """
- weights = SqueezeNet1_0_Weights.verify(weights)
- return _squeezenet("1_0", weights, progress, **kwargs)
- @register_model()
- @handle_legacy_interface(weights=("pretrained", SqueezeNet1_1_Weights.IMAGENET1K_V1))
- def squeezenet1_1(
- *, weights: Optional[SqueezeNet1_1_Weights] = None, progress: bool = True, **kwargs: Any
- ) -> SqueezeNet:
- """SqueezeNet 1.1 model from the `official SqueezeNet repo
- <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
- SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
- than SqueezeNet 1.0, without sacrificing accuracy.
- Args:
- weights (:class:`~torchvision.models.SqueezeNet1_1_Weights`, optional): The
- pretrained weights to use. See
- :class:`~torchvision.models.SqueezeNet1_1_Weights` below for
- more details, and possible values. By default, no pre-trained
- weights are used.
- progress (bool, optional): If True, displays a progress bar of the
- download to stderr. Default is True.
- **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
- base class. Please refer to the `source code
- <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
- for more details about this class.
- .. autoclass:: torchvision.models.SqueezeNet1_1_Weights
- :members:
- """
- weights = SqueezeNet1_1_Weights.verify(weights)
- return _squeezenet("1_1", weights, progress, **kwargs)
|