1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- import torch
- from torchvision.utils import draw_bounding_boxes
- from torchvision import transforms
- import matplotlib.pyplot as plt
- import numpy as np
- def c(score):
- # 根据分数返回颜色的函数,这里仅作示例,您可以根据需要修改
- return (1, 0, 0) if score > 0.9 else (0, 1, 0)
- def postprocess(lines, scores, diag_threshold, min_score, remove_overlaps):
- # 假设的后处理函数,用于过滤线段
- nlines = []
- nscores = []
- for line, score in zip(lines, scores):
- if score >= min_score:
- nlines.append(line)
- nscores.append(score)
- return np.array(nlines), np.array(nscores)
- def show_line(img, pred, epoch, writer):
- im = img.permute(1, 2, 0).cpu().numpy()
- # 绘制边界框
- boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), pred[0]["boxes"],
- colors="yellow", width=1).permute(1, 2, 0).cpu().numpy()
- H = pred[-1]['wires']
- lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2]
- scores = H["score"][0].cpu().numpy()
- print(f"Lines before deduplication: {len(lines)}")
- # 移除重复的线段
- for i in range(1, len(lines)):
- if (lines[i] == lines[0]).all():
- lines = lines[:i]
- scores = scores[:i]
- break
- print(f"Lines after deduplication: {len(lines)}")
- # 后处理线段以移除重叠的线段
- diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
- nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False)
- print(f"Lines after postprocessing: {len(nlines)}")
- # 创建一个新的图像并绘制线段和边界框
- fig, ax = plt.subplots(figsize=(boxed_image.shape[1] / 100, boxed_image.shape[0] / 100))
- ax.imshow(boxed_image)
- ax.set_axis_off()
- plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
- plt.margins(0, 0)
- plt.gca().xaxis.set_major_locator(plt.NullLocator())
- plt.gca().yaxis.set_major_locator(plt.NullLocator())
- PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5}
- for (a, b), s in zip(nlines, nscores):
- if s < 0.85: # 调整阈值以筛选显示的线段
- continue
- plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s)
- plt.scatter(a[1], a[0], **PLTOPTS)
- plt.scatter(b[1], b[0], **PLTOPTS)
- plt.tight_layout()
- fig.canvas.draw()
- image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(
- fig.canvas.get_width_height()[::-1] + (3,))
- plt.close()
- img2 = transforms.ToTensor()(image_from_plot)
- writer.add_image("output_with_boxes_and_lines", img2, epoch)
- print("Image with boxes and lines added to TensorBoard.")
|