wirepoint_rcnn.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. import os
  2. from typing import Optional, Any
  3. import cv2
  4. import numpy as np
  5. import torch
  6. from tensorboardX import SummaryWriter
  7. from torch import nn
  8. import torch.nn.functional as F
  9. # from torchinfo import summary
  10. from torchvision.io import read_image
  11. from torchvision.models import resnet50, ResNet50_Weights
  12. from torchvision.models.detection import FasterRCNN, MaskRCNN_ResNet50_FPN_V2_Weights
  13. from torchvision.models.detection._utils import overwrite_eps
  14. from torchvision.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers
  15. from torchvision.models.detection.faster_rcnn import TwoMLPHead, FastRCNNPredictor
  16. from torchvision.models.detection.keypoint_rcnn import KeypointRCNNHeads, KeypointRCNNPredictor, \
  17. KeypointRCNN_ResNet50_FPN_Weights
  18. from torchvision.ops import MultiScaleRoIAlign
  19. from torchvision.ops import misc as misc_nn_ops
  20. # from visdom import Visdom
  21. from models.config import config_tool
  22. from models.config.config_tool import read_yaml
  23. from models.ins.trainer import get_transform
  24. from models.wirenet.head import RoIHeads
  25. from models.wirenet.wirepoint_dataset import WirePointDataset
  26. from tools import utils
  27. from torch.utils.tensorboard import SummaryWriter
  28. import matplotlib.pyplot as plt
  29. import matplotlib as mpl
  30. from skimage import io
  31. import os.path as osp
  32. from torchvision.utils import draw_bounding_boxes
  33. FEATURE_DIM = 8
  34. device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  35. print(f"Using device: {device}")
  36. def non_maximum_suppression(a):
  37. ap = F.max_pool2d(a, 3, stride=1, padding=1)
  38. mask = (a == ap).float().clamp(min=0.0)
  39. return a * mask
  40. class Bottleneck1D(nn.Module):
  41. def __init__(self, inplanes, outplanes):
  42. super(Bottleneck1D, self).__init__()
  43. planes = outplanes // 2
  44. self.op = nn.Sequential(
  45. nn.BatchNorm1d(inplanes),
  46. nn.ReLU(inplace=True),
  47. nn.Conv1d(inplanes, planes, kernel_size=1),
  48. nn.BatchNorm1d(planes),
  49. nn.ReLU(inplace=True),
  50. nn.Conv1d(planes, planes, kernel_size=3, padding=1),
  51. nn.BatchNorm1d(planes),
  52. nn.ReLU(inplace=True),
  53. nn.Conv1d(planes, outplanes, kernel_size=1),
  54. )
  55. def forward(self, x):
  56. return x + self.op(x)
  57. class WirepointRCNN(FasterRCNN):
  58. def __init__(
  59. self,
  60. backbone,
  61. num_classes=None,
  62. # transform parameters
  63. min_size=None,
  64. max_size=1333,
  65. image_mean=None,
  66. image_std=None,
  67. # RPN parameters
  68. rpn_anchor_generator=None,
  69. rpn_head=None,
  70. rpn_pre_nms_top_n_train=2000,
  71. rpn_pre_nms_top_n_test=1000,
  72. rpn_post_nms_top_n_train=2000,
  73. rpn_post_nms_top_n_test=1000,
  74. rpn_nms_thresh=0.7,
  75. rpn_fg_iou_thresh=0.7,
  76. rpn_bg_iou_thresh=0.3,
  77. rpn_batch_size_per_image=256,
  78. rpn_positive_fraction=0.5,
  79. rpn_score_thresh=0.0,
  80. # Box parameters
  81. box_roi_pool=None,
  82. box_head=None,
  83. box_predictor=None,
  84. box_score_thresh=0.05,
  85. box_nms_thresh=0.5,
  86. box_detections_per_img=100,
  87. box_fg_iou_thresh=0.5,
  88. box_bg_iou_thresh=0.5,
  89. box_batch_size_per_image=512,
  90. box_positive_fraction=0.25,
  91. bbox_reg_weights=None,
  92. # keypoint parameters
  93. keypoint_roi_pool=None,
  94. keypoint_head=None,
  95. keypoint_predictor=None,
  96. num_keypoints=None,
  97. wirepoint_roi_pool=None,
  98. wirepoint_head=None,
  99. wirepoint_predictor=None,
  100. **kwargs,
  101. ):
  102. if not isinstance(keypoint_roi_pool, (MultiScaleRoIAlign, type(None))):
  103. raise TypeError(
  104. "keypoint_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(keypoint_roi_pool)}"
  105. )
  106. if min_size is None:
  107. min_size = (640, 672, 704, 736, 768, 800)
  108. if num_keypoints is not None:
  109. if keypoint_predictor is not None:
  110. raise ValueError("num_keypoints should be None when keypoint_predictor is specified")
  111. else:
  112. num_keypoints = 17
  113. out_channels = backbone.out_channels
  114. if wirepoint_roi_pool is None:
  115. wirepoint_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=128,
  116. sampling_ratio=2, )
  117. if wirepoint_head is None:
  118. keypoint_layers = tuple(512 for _ in range(8))
  119. # print(f'keypoinyrcnnHeads inchannels:{out_channels},layers{keypoint_layers}')
  120. wirepoint_head = WirepointHead(out_channels, keypoint_layers)
  121. if wirepoint_predictor is None:
  122. keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  123. wirepoint_predictor = WirepointPredictor()
  124. super().__init__(
  125. backbone,
  126. num_classes,
  127. # transform parameters
  128. min_size,
  129. max_size,
  130. image_mean,
  131. image_std,
  132. # RPN-specific parameters
  133. rpn_anchor_generator,
  134. rpn_head,
  135. rpn_pre_nms_top_n_train,
  136. rpn_pre_nms_top_n_test,
  137. rpn_post_nms_top_n_train,
  138. rpn_post_nms_top_n_test,
  139. rpn_nms_thresh,
  140. rpn_fg_iou_thresh,
  141. rpn_bg_iou_thresh,
  142. rpn_batch_size_per_image,
  143. rpn_positive_fraction,
  144. rpn_score_thresh,
  145. # Box parameters
  146. box_roi_pool,
  147. box_head,
  148. box_predictor,
  149. box_score_thresh,
  150. box_nms_thresh,
  151. box_detections_per_img,
  152. box_fg_iou_thresh,
  153. box_bg_iou_thresh,
  154. box_batch_size_per_image,
  155. box_positive_fraction,
  156. bbox_reg_weights,
  157. **kwargs,
  158. )
  159. if box_roi_pool is None:
  160. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=14, sampling_ratio=2)
  161. if box_head is None:
  162. resolution = box_roi_pool.output_size[0]
  163. representation_size = 1024
  164. box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
  165. if box_predictor is None:
  166. representation_size = 1024
  167. box_predictor = FastRCNNPredictor(representation_size, num_classes)
  168. roi_heads = RoIHeads(
  169. # Box
  170. box_roi_pool,
  171. box_head,
  172. box_predictor,
  173. box_fg_iou_thresh,
  174. box_bg_iou_thresh,
  175. box_batch_size_per_image,
  176. box_positive_fraction,
  177. bbox_reg_weights,
  178. box_score_thresh,
  179. box_nms_thresh,
  180. box_detections_per_img,
  181. # wirepoint_roi_pool=wirepoint_roi_pool,
  182. # wirepoint_head=wirepoint_head,
  183. # wirepoint_predictor=wirepoint_predictor,
  184. )
  185. self.roi_heads = roi_heads
  186. self.roi_heads.wirepoint_roi_pool = wirepoint_roi_pool
  187. self.roi_heads.wirepoint_head = wirepoint_head
  188. self.roi_heads.wirepoint_predictor = wirepoint_predictor
  189. class WirepointHead(nn.Module):
  190. def __init__(self, input_channels, num_class):
  191. super(WirepointHead, self).__init__()
  192. self.head_size = [[2], [1], [2]]
  193. m = int(input_channels / 4)
  194. heads = []
  195. # print(f'M.head_size:{M.head_size}')
  196. # for output_channels in sum(M.head_size, []):
  197. for output_channels in sum(self.head_size, []):
  198. heads.append(
  199. nn.Sequential(
  200. nn.Conv2d(input_channels, m, kernel_size=3, padding=1),
  201. nn.ReLU(inplace=True),
  202. nn.Conv2d(m, output_channels, kernel_size=1),
  203. )
  204. )
  205. self.heads = nn.ModuleList(heads)
  206. def forward(self, x):
  207. # for idx, head in enumerate(self.heads):
  208. # print(f'{idx},multitask head:{head(x).shape},input x:{x.shape}')
  209. outputs = torch.cat([head(x) for head in self.heads], dim=1)
  210. features = x
  211. return outputs, features
  212. class WirepointPredictor(nn.Module):
  213. def __init__(self):
  214. super().__init__()
  215. # self.backbone = backbone
  216. # self.cfg = read_yaml(cfg)
  217. self.cfg = read_yaml('wirenet.yaml')
  218. self.n_pts0 = self.cfg['model']['n_pts0']
  219. self.n_pts1 = self.cfg['model']['n_pts1']
  220. self.n_stc_posl = self.cfg['model']['n_stc_posl']
  221. self.dim_loi = self.cfg['model']['dim_loi']
  222. self.use_conv = self.cfg['model']['use_conv']
  223. self.dim_fc = self.cfg['model']['dim_fc']
  224. self.n_out_line = self.cfg['model']['n_out_line']
  225. self.n_out_junc = self.cfg['model']['n_out_junc']
  226. self.loss_weight = self.cfg['model']['loss_weight']
  227. self.n_dyn_junc = self.cfg['model']['n_dyn_junc']
  228. self.eval_junc_thres = self.cfg['model']['eval_junc_thres']
  229. self.n_dyn_posl = self.cfg['model']['n_dyn_posl']
  230. self.n_dyn_negl = self.cfg['model']['n_dyn_negl']
  231. self.n_dyn_othr = self.cfg['model']['n_dyn_othr']
  232. self.use_cood = self.cfg['model']['use_cood']
  233. self.use_slop = self.cfg['model']['use_slop']
  234. self.n_stc_negl = self.cfg['model']['n_stc_negl']
  235. self.head_size = self.cfg['model']['head_size']
  236. self.num_class = sum(sum(self.head_size, []))
  237. self.head_off = np.cumsum([sum(h) for h in self.head_size])
  238. lambda_ = torch.linspace(0, 1, self.n_pts0)[:, None]
  239. self.register_buffer("lambda_", lambda_)
  240. self.do_static_sampling = self.n_stc_posl + self.n_stc_negl > 0
  241. self.fc1 = nn.Conv2d(256, self.dim_loi, 1)
  242. scale_factor = self.n_pts0 // self.n_pts1
  243. if self.use_conv:
  244. self.pooling = nn.Sequential(
  245. nn.MaxPool1d(scale_factor, scale_factor),
  246. Bottleneck1D(self.dim_loi, self.dim_loi),
  247. )
  248. self.fc2 = nn.Sequential(
  249. nn.ReLU(inplace=True), nn.Linear(self.dim_loi * self.n_pts1 + FEATURE_DIM, 1)
  250. )
  251. else:
  252. self.pooling = nn.MaxPool1d(scale_factor, scale_factor)
  253. self.fc2 = nn.Sequential(
  254. nn.Linear(self.dim_loi * self.n_pts1 + FEATURE_DIM, self.dim_fc),
  255. nn.ReLU(inplace=True),
  256. nn.Linear(self.dim_fc, self.dim_fc),
  257. nn.ReLU(inplace=True),
  258. nn.Linear(self.dim_fc, 1),
  259. )
  260. self.loss = nn.BCEWithLogitsLoss(reduction="none")
  261. def forward(self, inputs, features, targets=None):
  262. # outputs, features = input
  263. # for out in outputs:
  264. # print(f'out:{out.shape}')
  265. # outputs=merge_features(outputs,100)
  266. batch, channel, row, col = inputs.shape
  267. # print(f'outputs:{inputs.shape}')
  268. # print(f'batch:{batch}, channel:{channel}, row:{row}, col:{col}')
  269. if targets is not None:
  270. self.training = True
  271. # print(f'target:{targets}')
  272. wires_targets = [t["wires"] for t in targets]
  273. # print(f'wires_target:{wires_targets}')
  274. # 提取所有 'junc_map', 'junc_offset', 'line_map' 的张量
  275. junc_maps = [d["junc_map"] for d in wires_targets]
  276. junc_offsets = [d["junc_offset"] for d in wires_targets]
  277. line_maps = [d["line_map"] for d in wires_targets]
  278. junc_map_tensor = torch.stack(junc_maps, dim=0)
  279. junc_offset_tensor = torch.stack(junc_offsets, dim=0)
  280. line_map_tensor = torch.stack(line_maps, dim=0)
  281. wires_meta = {
  282. "junc_map": junc_map_tensor,
  283. "junc_offset": junc_offset_tensor,
  284. # "line_map": line_map_tensor,
  285. }
  286. else:
  287. self.training = False
  288. t = {
  289. "junc_coords": torch.zeros(1, 2).to(device),
  290. "jtyp": torch.zeros(1, dtype=torch.uint8).to(device),
  291. "line_pos_idx": torch.zeros(2, 2, dtype=torch.uint8).to(device),
  292. "line_neg_idx": torch.zeros(2, 2, dtype=torch.uint8).to(device),
  293. "junc_map": torch.zeros([1, 1, 128, 128]).to(device),
  294. "junc_offset": torch.zeros([1, 1, 2, 128, 128]).to(device),
  295. }
  296. wires_targets = [t for b in range(inputs.size(0))]
  297. wires_meta = {
  298. "junc_map": torch.zeros([1, 1, 128, 128]).to(device),
  299. "junc_offset": torch.zeros([1, 1, 2, 128, 128]).to(device),
  300. }
  301. T = wires_meta.copy()
  302. n_jtyp = T["junc_map"].shape[1]
  303. offset = self.head_off
  304. result = {}
  305. for stack, output in enumerate([inputs]):
  306. output = output.transpose(0, 1).reshape([-1, batch, row, col]).contiguous()
  307. # print(f"Stack {stack} output shape: {output.shape}") # 打印每层的输出形状
  308. jmap = output[0: offset[0]].reshape(n_jtyp, 2, batch, row, col)
  309. lmap = output[offset[0]: offset[1]].squeeze(0)
  310. joff = output[offset[1]: offset[2]].reshape(n_jtyp, 2, batch, row, col)
  311. if stack == 0:
  312. result["preds"] = {
  313. "jmap": jmap.permute(2, 0, 1, 3, 4).softmax(2)[:, :, 1],
  314. "lmap": lmap.sigmoid(),
  315. "joff": joff.permute(2, 0, 1, 3, 4).sigmoid() - 0.5,
  316. }
  317. h = result["preds"]
  318. # print(f'features shape:{features.shape}')
  319. x = self.fc1(features)
  320. n_batch, n_channel, row, col = x.shape
  321. xs, ys, fs, ps, idx, jcs = [], [], [], [], [0], []
  322. for i, meta in enumerate(wires_targets):
  323. p, label, feat, jc = self.sample_lines(
  324. meta, h["jmap"][i], h["joff"][i],
  325. )
  326. # print(f"p.shape:{p.shape},label:{label.shape},feat:{feat.shape},jc:{len(jc)}")
  327. ys.append(label)
  328. if self.training and self.do_static_sampling:
  329. p = torch.cat([p, meta["lpre"]])
  330. feat = torch.cat([feat, meta["lpre_feat"]])
  331. ys.append(meta["lpre_label"])
  332. del jc
  333. else:
  334. jcs.append(jc)
  335. ps.append(p)
  336. fs.append(feat)
  337. p = p[:, 0:1, :] * self.lambda_ + p[:, 1:2, :] * (1 - self.lambda_) - 0.5
  338. p = p.reshape(-1, 2) # [N_LINE x N_POINT, 2_XY]
  339. px, py = p[:, 0].contiguous(), p[:, 1].contiguous()
  340. px0 = px.floor().clamp(min=0, max=127)
  341. py0 = py.floor().clamp(min=0, max=127)
  342. px1 = (px0 + 1).clamp(min=0, max=127)
  343. py1 = (py0 + 1).clamp(min=0, max=127)
  344. px0l, py0l, px1l, py1l = px0.long(), py0.long(), px1.long(), py1.long()
  345. # xp: [N_LINE, N_CHANNEL, N_POINT]
  346. xp = (
  347. (
  348. x[i, :, px0l, py0l] * (px1 - px) * (py1 - py)
  349. + x[i, :, px1l, py0l] * (px - px0) * (py1 - py)
  350. + x[i, :, px0l, py1l] * (px1 - px) * (py - py0)
  351. + x[i, :, px1l, py1l] * (px - px0) * (py - py0)
  352. )
  353. .reshape(n_channel, -1, self.n_pts0)
  354. .permute(1, 0, 2)
  355. )
  356. xp = self.pooling(xp)
  357. # print(f'xp.shape:{xp.shape}')
  358. xs.append(xp)
  359. idx.append(idx[-1] + xp.shape[0])
  360. # print(f'idx__:{idx}')
  361. x, y = torch.cat(xs), torch.cat(ys)
  362. f = torch.cat(fs)
  363. x = x.reshape(-1, self.n_pts1 * self.dim_loi)
  364. x = torch.cat([x, f], 1)
  365. x = x.to(dtype=torch.float32)
  366. x = self.fc2(x).flatten()
  367. # return x,idx,jcs,n_batch,ps,self.n_out_line,self.n_out_junc
  368. return x, y, idx, jcs, n_batch, ps, self.n_out_line, self.n_out_junc
  369. # if mode != "training":
  370. # self.inference(x, idx, jcs, n_batch, ps)
  371. # return result
  372. def sample_lines(self, meta, jmap, joff):
  373. with torch.no_grad():
  374. junc = meta["junc_coords"] # [N, 2]
  375. jtyp = meta["jtyp"] # [N]
  376. Lpos = meta["line_pos_idx"]
  377. Lneg = meta["line_neg_idx"]
  378. n_type = jmap.shape[0]
  379. jmap = non_maximum_suppression(jmap).reshape(n_type, -1)
  380. joff = joff.reshape(n_type, 2, -1)
  381. max_K = self.n_dyn_junc // n_type
  382. N = len(junc)
  383. # if mode != "training":
  384. if not self.training:
  385. K = min(int((jmap > self.eval_junc_thres).float().sum().item()), max_K)
  386. else:
  387. K = min(int(N * 2 + 2), max_K)
  388. if K < 2:
  389. K = 2
  390. device = jmap.device
  391. # index: [N_TYPE, K]
  392. score, index = torch.topk(jmap, k=K)
  393. y = (index // 128).float() + torch.gather(joff[:, 0], 1, index) + 0.5
  394. x = (index % 128).float() + torch.gather(joff[:, 1], 1, index) + 0.5
  395. # xy: [N_TYPE, K, 2]
  396. xy = torch.cat([y[..., None], x[..., None]], dim=-1)
  397. xy_ = xy[..., None, :]
  398. del x, y, index
  399. # print(f"xy_.is_cuda: {xy_.is_cuda}")
  400. # print(f"junc.is_cuda: {junc.is_cuda}")
  401. # dist: [N_TYPE, K, N]
  402. dist = torch.sum((xy_ - junc) ** 2, -1)
  403. cost, match = torch.min(dist, -1)
  404. # xy: [N_TYPE * K, 2]
  405. # match: [N_TYPE, K]
  406. for t in range(n_type):
  407. match[t, jtyp[match[t]] != t] = N
  408. match[cost > 1.5 * 1.5] = N
  409. match = match.flatten()
  410. _ = torch.arange(n_type * K, device=device)
  411. u, v = torch.meshgrid(_, _)
  412. u, v = u.flatten(), v.flatten()
  413. up, vp = match[u], match[v]
  414. label = Lpos[up, vp]
  415. # if mode == "training":
  416. if self.training:
  417. c = torch.zeros_like(label, dtype=torch.bool)
  418. # sample positive lines
  419. cdx = label.nonzero().flatten()
  420. if len(cdx) > self.n_dyn_posl:
  421. # print("too many positive lines")
  422. perm = torch.randperm(len(cdx), device=device)[: self.n_dyn_posl]
  423. cdx = cdx[perm]
  424. c[cdx] = 1
  425. # sample negative lines
  426. cdx = Lneg[up, vp].nonzero().flatten()
  427. if len(cdx) > self.n_dyn_negl:
  428. # print("too many negative lines")
  429. perm = torch.randperm(len(cdx), device=device)[: self.n_dyn_negl]
  430. cdx = cdx[perm]
  431. c[cdx] = 1
  432. # sample other (unmatched) lines
  433. cdx = torch.randint(len(c), (self.n_dyn_othr,), device=device)
  434. c[cdx] = 1
  435. else:
  436. c = (u < v).flatten()
  437. # sample lines
  438. u, v, label = u[c], v[c], label[c]
  439. xy = xy.reshape(n_type * K, 2)
  440. xyu, xyv = xy[u], xy[v]
  441. u2v = xyu - xyv
  442. u2v /= torch.sqrt((u2v ** 2).sum(-1, keepdim=True)).clamp(min=1e-6)
  443. feat = torch.cat(
  444. [
  445. xyu / 128 * self.use_cood,
  446. xyv / 128 * self.use_cood,
  447. u2v * self.use_slop,
  448. (u[:, None] > K).float(),
  449. (v[:, None] > K).float(),
  450. ],
  451. 1,
  452. )
  453. line = torch.cat([xyu[:, None], xyv[:, None]], 1)
  454. xy = xy.reshape(n_type, K, 2)
  455. jcs = [xy[i, score[i] > 0.03] for i in range(n_type)]
  456. return line, label.float(), feat, jcs
  457. def wirepointrcnn_resnet50_fpn(
  458. *,
  459. weights: Optional[KeypointRCNN_ResNet50_FPN_Weights] = None,
  460. progress: bool = True,
  461. num_classes: Optional[int] = None,
  462. num_keypoints: Optional[int] = None,
  463. weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
  464. trainable_backbone_layers: Optional[int] = None,
  465. **kwargs: Any,
  466. ) -> WirepointRCNN:
  467. weights = KeypointRCNN_ResNet50_FPN_Weights.verify(weights)
  468. weights_backbone = ResNet50_Weights.verify(weights_backbone)
  469. is_trained = weights is not None or weights_backbone is not None
  470. trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
  471. norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
  472. backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
  473. backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
  474. model = WirepointRCNN(backbone, num_classes=5, **kwargs)
  475. if weights is not None:
  476. model.load_state_dict(weights.get_state_dict(progress=progress))
  477. if weights == KeypointRCNN_ResNet50_FPN_Weights.COCO_V1:
  478. overwrite_eps(model, 0.0)
  479. return model
  480. def _loss(losses):
  481. total_loss = 0
  482. for i in losses.keys():
  483. if i != "loss_wirepoint":
  484. total_loss += losses[i]
  485. else:
  486. loss_labels = losses[i]["losses"]
  487. loss_labels_k = list(loss_labels[0].keys())
  488. for j, name in enumerate(loss_labels_k):
  489. loss = loss_labels[0][name].mean()
  490. total_loss += loss
  491. return total_loss
  492. cmap = plt.get_cmap("jet")
  493. norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
  494. sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
  495. sm.set_array([])
  496. def c(x):
  497. return sm.to_rgba(x)
  498. def imshow(im):
  499. plt.close()
  500. plt.tight_layout()
  501. plt.imshow(im)
  502. plt.colorbar(sm, fraction=0.046)
  503. plt.xlim([0, im.shape[0]])
  504. plt.ylim([im.shape[0], 0])
  505. plt.show()
  506. def _plot_samples(img, i, result, prefix, epoch):
  507. print(f"prefix:{prefix}")
  508. def draw_vecl(lines, sline, juncs, junts, fn):
  509. if not os.path.exists(fn):
  510. os.makedirs(fn)
  511. imshow(img.permute(1, 2, 0))
  512. if len(lines) > 0 and not (lines[0] == 0).all():
  513. for i, ((a, b), s) in enumerate(zip(lines, sline)):
  514. if i > 0 and (lines[i] == lines[0]).all():
  515. break
  516. plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=4)
  517. if not (juncs[0] == 0).all():
  518. for i, j in enumerate(juncs):
  519. if i > 0 and (i == juncs[0]).all():
  520. break
  521. plt.scatter(j[1], j[0], c="red", s=64, zorder=100)
  522. if junts is not None and len(junts) > 0 and not (junts[0] == 0).all():
  523. for i, j in enumerate(junts):
  524. if i > 0 and (i == junts[0]).all():
  525. break
  526. plt.scatter(j[1], j[0], c="blue", s=64, zorder=100)
  527. plt.savefig(fn), plt.close()
  528. rjuncs = result["juncs"][i].cpu().numpy() * 4
  529. rjunts = None
  530. if "junts" in result:
  531. rjunts = result["junts"][i].cpu().numpy() * 4
  532. vecl_result = result["lines"][i].cpu().numpy() * 4
  533. score = result["score"][i].cpu().numpy()
  534. draw_vecl(vecl_result, score, rjuncs, rjunts, f"{prefix}_vecl_b.jpg")
  535. img1 = cv2.imread(f"{prefix}_vecl_b.jpg")
  536. writer.add_image(f'output_epoch_{epoch}', img1, global_step=epoch)
  537. if __name__ == '__main__':
  538. cfg = 'wirenet.yaml'
  539. cfg = read_yaml(cfg)
  540. print(f'cfg:{cfg}')
  541. print(cfg['model']['n_dyn_negl'])
  542. # net = WirepointPredictor()
  543. # if torch.cuda.is_available():
  544. # device_name = "cuda"
  545. # torch.backends.cudnn.deterministic = True
  546. # torch.cuda.manual_seed(0)
  547. # print("Let's use", torch.cuda.device_count(), "GPU(s)!")
  548. # else:
  549. # print("CUDA is not available")
  550. #
  551. # device = torch.device(device_name)
  552. dataset_train = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='train')
  553. train_sampler = torch.utils.data.RandomSampler(dataset_train)
  554. # test_sampler = torch.utils.data.SequentialSampler(dataset_test)
  555. train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=1, drop_last=True)
  556. train_collate_fn = utils.collate_fn_wirepoint
  557. data_loader_train = torch.utils.data.DataLoader(
  558. dataset_train, batch_sampler=train_batch_sampler, num_workers=0, collate_fn=train_collate_fn
  559. )
  560. dataset_val = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='val')
  561. val_sampler = torch.utils.data.RandomSampler(dataset_val)
  562. # test_sampler = torch.utils.data.SequentialSampler(dataset_test)
  563. val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=1, drop_last=True)
  564. val_collate_fn = utils.collate_fn_wirepoint
  565. data_loader_val = torch.utils.data.DataLoader(
  566. dataset_val, batch_sampler=val_batch_sampler, num_workers=0, collate_fn=val_collate_fn
  567. )
  568. model = wirepointrcnn_resnet50_fpn().to(device)
  569. optimizer = torch.optim.Adam(model.parameters(), lr=cfg['optim']['lr'])
  570. writer = SummaryWriter(cfg['io']['logdir'])
  571. def move_to_device(data, device):
  572. if isinstance(data, (list, tuple)):
  573. return type(data)(move_to_device(item, device) for item in data)
  574. elif isinstance(data, dict):
  575. return {key: move_to_device(value, device) for key, value in data.items()}
  576. elif isinstance(data, torch.Tensor):
  577. return data.to(device)
  578. else:
  579. return data # 对于非张量类型的数据不做任何改变
  580. def writer_loss(writer, losses, epoch):
  581. # ??????
  582. try:
  583. for key, value in losses.items():
  584. if key == 'loss_wirepoint':
  585. # ?? wirepoint ??????
  586. for subdict in losses['loss_wirepoint']['losses']:
  587. for subkey, subvalue in subdict.items():
  588. # ?? .item() ?????
  589. writer.add_scalar(f'loss_wirepoint/{subkey}',
  590. subvalue.item() if hasattr(subvalue, 'item') else subvalue,
  591. epoch)
  592. elif isinstance(value, torch.Tensor):
  593. # ????????
  594. writer.add_scalar(key, value.item(), epoch)
  595. except Exception as e:
  596. print(f"TensorBoard logging error: {e}")
  597. for epoch in range(cfg['optim']['max_epoch']):
  598. print(f"epoch:{epoch}")
  599. model.train()
  600. for imgs, targets in data_loader_train:
  601. losses = model(move_to_device(imgs, device), move_to_device(targets, device))
  602. loss = _loss(losses)
  603. print(loss)
  604. optimizer.zero_grad()
  605. loss.backward()
  606. optimizer.step()
  607. writer_loss(writer, losses, epoch)
  608. model.eval()
  609. with torch.no_grad():
  610. for batch_idx, (imgs, targets) in enumerate(data_loader_val):
  611. pred = model(move_to_device(imgs, device))
  612. # print(f"pred:{pred}")
  613. if batch_idx == 0:
  614. result = pred[1]['wires'] # pred[0].keys() ['boxes', 'labels', 'scores']
  615. print(imgs[0].shape) # [3,512,512]
  616. # imshow(imgs[0].permute(1, 2, 0)) # 改为(512, 512, 3)
  617. _plot_samples(imgs[0], 0, result, f"{cfg['io']['logdir']}/{epoch}/", epoch)
  618. # imgs, targets = next(iter(data_loader))
  619. #
  620. # model.train()
  621. # pred = model(imgs, targets)
  622. # print(f'pred:{pred}')
  623. # result, losses = model(imgs, targets)
  624. # print(f'result:{result}')
  625. # print(f'pred:{losses}')