postprocess.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. import time
  2. import torch
  3. import matplotlib.pyplot as plt
  4. import numpy as np
  5. from torchvision import transforms
  6. from models.wirenet.postprocess import postprocess
  7. def box_line(pred):
  8. '''
  9. :param pred: 预测结果
  10. :return:
  11. box与line一一对应
  12. {'box': [0.0, 34.23157501220703, 151.70858764648438, 125.10173797607422], 'line': array([[ 1.9720564, 81.73457 ],
  13. [ 1.9933801, 41.730167 ]], dtype=float32)}
  14. '''
  15. box_line = [[] for _ in range((len(pred) - 1))]
  16. for idx, box_ in enumerate(pred[0:-1]):
  17. box = box_['boxes'] # 是一个tensor
  18. line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
  19. score = pred[-1]['wires']['score'][idx]
  20. for i in box:
  21. aaa = {}
  22. aaa['box'] = i.tolist()
  23. aaa['line'] = []
  24. score_max = 0.0
  25. for j in range(len(line)):
  26. if (line[j][0][0] >= i[0] and line[j][1][0] >= i[0] and line[j][0][0] <= i[2] and
  27. line[j][1][0] <= i[2] and line[j][0][1] >= i[1] and line[j][1][1] >= i[1] and
  28. line[j][0][1] <= i[3] and line[j][1][1] <= i[3]):
  29. if score[j] > score_max:
  30. aaa['line'] = line[j]
  31. score_max = score[j]
  32. box_line[idx].append(aaa)
  33. def box_line_(pred):
  34. for idx, box_ in enumerate(pred[0:-1]):
  35. box = box_['boxes'] # 是一个tensor
  36. line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
  37. score = pred[-1]['wires']['score'][idx]
  38. line_ = []
  39. score_ = []
  40. for i in box:
  41. score_max = 0.0
  42. tmp = [[0.0, 0.0], [0.0, 0.0]]
  43. for j in range(len(line)):
  44. if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and
  45. line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and
  46. line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and
  47. line[j][0][0] <= i[3] and line[j][1][0] <= i[3]):
  48. if score[j] > score_max:
  49. tmp = line[j]
  50. score_max = score[j]
  51. line_.append(tmp)
  52. score_.append(score_max)
  53. processed_list = torch.tensor(line_)
  54. pred[idx]['line'] = processed_list
  55. processed_s_list = torch.tensor(score_)
  56. pred[idx]['line_score'] = processed_s_list
  57. return pred
  58. def show_(imgs, pred, epoch, writer):
  59. col = [
  60. '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
  61. '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
  62. '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
  63. '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
  64. '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
  65. '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
  66. '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
  67. '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
  68. '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
  69. '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
  70. '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
  71. '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
  72. '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
  73. '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
  74. '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
  75. '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
  76. '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
  77. '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
  78. '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
  79. '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
  80. ]
  81. # print(len(col))
  82. im = imgs[0].permute(1, 2, 0)
  83. boxes = pred[0]['boxes'].cpu().numpy()
  84. line = pred[0]['line'].cpu().numpy()
  85. # 可视化预测结
  86. fig, ax = plt.subplots(figsize=(10, 10))
  87. ax.imshow(np.array(im))
  88. for idx, box in enumerate(boxes):
  89. x0, y0, x1, y1 = box
  90. ax.add_patch(
  91. plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
  92. for idx, (a, b) in enumerate(line):
  93. ax.scatter(a[1], a[0], c='#871F78', s=2)
  94. ax.scatter(b[1], b[0], c='#871F78', s=2)
  95. ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1)
  96. # 将Matplotlib图像转换为Tensor
  97. fig.canvas.draw()
  98. image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(
  99. fig.canvas.get_width_height()[::-1] + (3,))
  100. plt.close()
  101. img2 = transforms.ToTensor()(image_from_plot)
  102. writer.add_image("all", img2, epoch)
  103. def show_predict(imgs, pred, t_start):
  104. col = [
  105. '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
  106. '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
  107. '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
  108. '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
  109. '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
  110. '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
  111. '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
  112. '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
  113. '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
  114. '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
  115. '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
  116. '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
  117. '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
  118. '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
  119. '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
  120. '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
  121. '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
  122. '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
  123. '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
  124. '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
  125. ]
  126. print(len(col))
  127. im = imgs.permute(1, 2, 0)
  128. boxes = pred[0]['boxes'].cpu().numpy()
  129. box_scores = pred[0]['scores'].cpu().numpy()
  130. lines = pred[0]['line'].cpu().numpy()
  131. line_scores = pred[0]['line_score'].cpu().numpy()
  132. # 可视化预测结
  133. fig, ax = plt.subplots(figsize=(10, 10))
  134. ax.imshow(np.array(im))
  135. idx = 0
  136. for box, line, box_score, line_score in zip(boxes, lines, box_scores, line_scores):
  137. x0, y0, x1, y1 = box
  138. a, b = line
  139. if box_score > 0.7 and line_score > 0.9:
  140. ax.add_patch(
  141. plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
  142. ax.scatter(a[1], a[0], c='#871F78', s=2)
  143. ax.scatter(b[1], b[0], c='#871F78', s=2)
  144. ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1)
  145. idx = idx + 1
  146. t_end = time.time()
  147. print(f'predict used:{t_end - t_start}')
  148. plt.show()