123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- """
- Hourglass network inserted in the pre-activated Resnet
- Use lr=0.01 for current version
- (c) Yichao Zhou (LCNN)
- (c) YANG, Wei
- """
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- __all__ = ["HourglassNet", "hg"]
- class Bottleneck2D(nn.Module):
- expansion = 2 # 扩展因子
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(Bottleneck2D, self).__init__()
- self.bn1 = nn.BatchNorm2d(inplanes)
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1)
- self.bn3 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.bn1(x)
- out = self.relu(out)
- out = self.conv1(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn3(out)
- out = self.relu(out)
- out = self.conv3(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- return out
- class Hourglass(nn.Module):
- def __init__(self, block, num_blocks, planes, depth):
- super(Hourglass, self).__init__()
- self.depth = depth
- self.block = block
- self.hg = self._make_hour_glass(block, num_blocks, planes, depth)
- def _make_residual(self, block, num_blocks, planes):
- layers = []
- for i in range(0, num_blocks):
- layers.append(block(planes * block.expansion, planes))
- return nn.Sequential(*layers)
- def _make_hour_glass(self, block, num_blocks, planes, depth):
- hg = []
- for i in range(depth):
- res = []
- for j in range(3):
- res.append(self._make_residual(block, num_blocks, planes))
- if i == 0:
- res.append(self._make_residual(block, num_blocks, planes))
- hg.append(nn.ModuleList(res))
- return nn.ModuleList(hg)
- def _hour_glass_forward(self, n, x):
- up1 = self.hg[n - 1][0](x)
- low1 = F.max_pool2d(x, 2, stride=2)
- low1 = self.hg[n - 1][1](low1)
- if n > 1:
- low2 = self._hour_glass_forward(n - 1, low1)
- else:
- low2 = self.hg[n - 1][3](low1)
- low3 = self.hg[n - 1][2](low2)
- up2 = F.interpolate(low3, scale_factor=2)
- out = up1 + up2
- return out
- def forward(self, x):
- return self._hour_glass_forward(self.depth, x)
- class HourglassNet(nn.Module):
- """Hourglass model from Newell et al ECCV 2016"""
- def __init__(self, block, head, depth, num_stacks, num_blocks, num_classes):
- super(HourglassNet, self).__init__()
- self.inplanes = 64
- self.num_feats = 128
- self.num_stacks = num_stacks
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3)
- self.bn1 = nn.BatchNorm2d(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.layer1 = self._make_residual(block, self.inplanes, 1)
- self.layer2 = self._make_residual(block, self.inplanes, 1)
- self.layer3 = self._make_residual(block, self.num_feats, 1)
- self.maxpool = nn.MaxPool2d(2, stride=2)
- # build hourglass modules
- ch = self.num_feats * block.expansion
- # vpts = []
- hg, res, fc, score, fc_, score_ = [], [], [], [], [], []
- for i in range(num_stacks):
- hg.append(Hourglass(block, num_blocks, self.num_feats, depth))
- res.append(self._make_residual(block, self.num_feats, num_blocks))
- fc.append(self._make_fc(ch, ch))
- score.append(head(ch, num_classes))
- # vpts.append(VptsHead(ch))
- # vpts.append(nn.Linear(ch, 9))
- # score.append(nn.Conv2d(ch, num_classes, kernel_size=1))
- # score[i].bias.data[0] += 4.6
- # score[i].bias.data[2] += 4.6
- if i < num_stacks - 1:
- fc_.append(nn.Conv2d(ch, ch, kernel_size=1))
- score_.append(nn.Conv2d(num_classes, ch, kernel_size=1))
- self.hg = nn.ModuleList(hg)
- self.res = nn.ModuleList(res)
- self.fc = nn.ModuleList(fc)
- self.score = nn.ModuleList(score)
- # self.vpts = nn.ModuleList(vpts)
- self.fc_ = nn.ModuleList(fc_)
- self.score_ = nn.ModuleList(score_)
- def _make_residual(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(
- self.inplanes,
- planes * block.expansion,
- kernel_size=1,
- stride=stride,
- )
- )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes))
- return nn.Sequential(*layers)
- def _make_fc(self, inplanes, outplanes):
- bn = nn.BatchNorm2d(inplanes)
- conv = nn.Conv2d(inplanes, outplanes, kernel_size=1)
- return nn.Sequential(conv, bn, self.relu)
- def forward(self, x):
- out = []
- # out_vps = []
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.layer1(x)
- x = self.maxpool(x)
- x = self.layer2(x)
- x = self.layer3(x)
- for i in range(self.num_stacks):
- y = self.hg[i](x)
- y = self.res[i](y)
- y = self.fc[i](y)
- score = self.score[i](y)
- # pre_vpts = F.adaptive_avg_pool2d(x, (1, 1))
- # pre_vpts = pre_vpts.reshape(-1, 256)
- # vpts = self.vpts[i](x)
- out.append(score)
- # out_vps.append(vpts)
- if i < self.num_stacks - 1:
- fc_ = self.fc_[i](y)
- score_ = self.score_[i](score)
- x = x + fc_ + score_
- return out[::-1], y # , out_vps[::-1]
- def hg(**kwargs):
- model = HourglassNet(
- Bottleneck2D,
- head=kwargs.get("head", lambda c_in, c_out: nn.Conv2D(c_in, c_out, 1)),
- depth=kwargs["depth"],
- num_stacks=kwargs["num_stacks"],
- num_blocks=kwargs["num_blocks"],
- num_classes=kwargs["num_classes"],
- )
- return model
|