from collections import OrderedDict from typing import Dict, List, Optional, Tuple import matplotlib.pyplot as plt import torch import torch.nn.functional as F import torchvision from torch import nn, Tensor from torchvision.ops import boxes as box_ops, roi_align from . import _utils as det_utils from torch.utils.data.dataloader import default_collate def l2loss(input, target): return ((target - input) ** 2).mean(2).mean(1) def cross_entropy_loss(logits, positive): nlogp = -F.log_softmax(logits, dim=0) return (positive * nlogp[1] + (1 - positive) * nlogp[0]).mean(2).mean(1) def sigmoid_l1_loss(logits, target, offset=0.0, mask=None): logp = torch.sigmoid(logits) + offset loss = torch.abs(logp - target) if mask is not None: w = mask.mean(2, True).mean(1, True) w[w == 0] = 1 loss = loss * (mask / w) return loss.mean(2).mean(1) # def wirepoint_loss(target, outputs, feature, loss_weight,mode): # wires = target['wires'] # result = {"feature": feature} # batch, channel, row, col = outputs[0].shape # print(f"Initial Output[0] shape: {outputs[0].shape}") # 打印初始输出形状 # print(f"Total Stacks: {len(outputs)}") # 打印堆栈数 # # T = wires.copy() # n_jtyp = T["junc_map"].shape[1] # for task in ["junc_map"]: # T[task] = T[task].permute(1, 0, 2, 3) # for task in ["junc_offset"]: # T[task] = T[task].permute(1, 2, 0, 3, 4) # # offset = self.head_off # loss_weight = loss_weight # losses = [] # # for stack, output in enumerate(outputs): # output = output.transpose(0, 1).reshape([-1, batch, row, col]).contiguous() # print(f"Stack {stack} output shape: {output.shape}") # 打印每层的输出形状 # jmap = output[0: offset[0]].reshape(n_jtyp, 2, batch, row, col) # lmap = output[offset[0]: offset[1]].squeeze(0) # joff = output[offset[1]: offset[2]].reshape(n_jtyp, 2, batch, row, col) # # if stack == 0: # result["preds"] = { # "jmap": jmap.permute(2, 0, 1, 3, 4).softmax(2)[:, :, 1], # "lmap": lmap.sigmoid(), # "joff": joff.permute(2, 0, 1, 3, 4).sigmoid() - 0.5, # } # # visualize_feature_map(jmap[0, 0], title=f"jmap - Stack {stack}") # # visualize_feature_map(lmap, title=f"lmap - Stack {stack}") # # visualize_feature_map(joff[0, 0], title=f"joff - Stack {stack}") # # if mode == "testing": # return result # # L = OrderedDict() # L["junc_map"] = sum( # cross_entropy_loss(jmap[i], T["junc_map"][i]) for i in range(n_jtyp) # ) # L["line_map"] = ( # F.binary_cross_entropy_with_logits(lmap, T["line_map"], reduction="none") # .mean(2) # .mean(1) # ) # L["junc_offset"] = sum( # sigmoid_l1_loss(joff[i, j], T["junc_offset"][i, j], -0.5, T["junc_map"][i]) # for i in range(n_jtyp) # for j in range(2) # ) # for loss_name in L: # L[loss_name].mul_(loss_weight[loss_name]) # losses.append(L) # # result["losses"] = losses # return result def wirepoint_head_line_loss(targets, output, x, y, idx, loss_weight): # output, feature: head返回结果 # x, y, idx : line中间生成结果 result = {} batch, channel, row, col = output.shape wires_targets = [t["wires"] for t in targets] wires_targets = wires_targets.copy() # print(f'wires_target:{wires_targets}') # 提取所有 'junc_map', 'junc_offset', 'line_map' 的张量 junc_maps = [d["junc_map"] for d in wires_targets] junc_offsets = [d["junc_offset"] for d in wires_targets] line_maps = [d["line_map"] for d in wires_targets] junc_map_tensor = torch.stack(junc_maps, dim=0) junc_offset_tensor = torch.stack(junc_offsets, dim=0) line_map_tensor = torch.stack(line_maps, dim=0) T = {"junc_map": junc_map_tensor, "junc_offset": junc_offset_tensor, "line_map": line_map_tensor} n_jtyp = T["junc_map"].shape[1] for task in ["junc_map"]: T[task] = T[task].permute(1, 0, 2, 3) for task in ["junc_offset"]: T[task] = T[task].permute(1, 2, 0, 3, 4) offset = [2, 3, 5] losses = [] output = output.transpose(0, 1).reshape([-1, batch, row, col]).contiguous() jmap = output[0: offset[0]].reshape(n_jtyp, 2, batch, row, col) lmap = output[offset[0]: offset[1]].squeeze(0) joff = output[offset[1]: offset[2]].reshape(n_jtyp, 2, batch, row, col) L = OrderedDict() L["junc_map"] = sum( cross_entropy_loss(jmap[i], T["junc_map"][i]) for i in range(n_jtyp) ) L["line_map"] = ( F.binary_cross_entropy_with_logits(lmap, T["line_map"], reduction="none") .mean(2) .mean(1) ) L["junc_offset"] = sum( sigmoid_l1_loss(joff[i, j], T["junc_offset"][i, j], -0.5, T["junc_map"][i]) for i in range(n_jtyp) for j in range(2) ) for loss_name in L: L[loss_name].mul_(loss_weight[loss_name]) losses.append(L) result["losses"] = losses loss = nn.BCEWithLogitsLoss(reduction="none") loss = loss(x, y) lpos_mask, lneg_mask = y, 1 - y loss_lpos, loss_lneg = loss * lpos_mask, loss * lneg_mask def sum_batch(x): xs = [x[idx[i]: idx[i + 1]].sum()[None] for i in range(batch)] return torch.cat(xs) lpos = sum_batch(loss_lpos) / sum_batch(lpos_mask).clamp(min=1) lneg = sum_batch(loss_lneg) / sum_batch(lneg_mask).clamp(min=1) result["losses"][0]["lpos"] = lpos * loss_weight["lpos"] result["losses"][0]["lneg"] = lneg * loss_weight["lneg"] return result def wirepoint_inference(input, idx, jcs, n_batch, ps, n_out_line, n_out_junc): result = {} result["wires"] = {} p = torch.cat(ps) s = torch.sigmoid(input) b = s > 0.5 lines = [] score = [] # print(f"n_batch:{n_batch}") for i in range(n_batch): # print(f"idx:{idx}") p0 = p[idx[i]: idx[i + 1]] s0 = s[idx[i]: idx[i + 1]] mask = b[idx[i]: idx[i + 1]] p0 = p0[mask] s0 = s0[mask] if len(p0) == 0: lines.append(torch.zeros([1, n_out_line, 2, 2], device=p.device)) score.append(torch.zeros([1, n_out_line], device=p.device)) else: arg = torch.argsort(s0, descending=True) p0, s0 = p0[arg], s0[arg] lines.append(p0[None, torch.arange(n_out_line) % len(p0)]) score.append(s0[None, torch.arange(n_out_line) % len(s0)]) for j in range(len(jcs[i])): if len(jcs[i][j]) == 0: jcs[i][j] = torch.zeros([n_out_junc, 2], device=p.device) jcs[i][j] = jcs[i][j][ None, torch.arange(n_out_junc) % len(jcs[i][j]) ] result["wires"]["lines"] = torch.cat(lines) result["wires"]["score"] = torch.cat(score) result["wires"]["juncs"] = torch.cat([jcs[i][0] for i in range(n_batch)]) if len(jcs[i]) > 1: result["preds"]["junts"] = torch.cat( [jcs[i][1] for i in range(n_batch)] ) return result def fastrcnn_loss(class_logits, box_regression, labels, regression_targets): # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor] """ Computes the loss for Faster R-CNN. Args: class_logits (Tensor) box_regression (Tensor) labels (list[BoxList]) regression_targets (Tensor) Returns: classification_loss (Tensor) box_loss (Tensor) """ labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) classification_loss = F.cross_entropy(class_logits, labels) # get indices that correspond to the regression targets for # the corresponding ground truth labels, to be used with # advanced indexing sampled_pos_inds_subset = torch.where(labels > 0)[0] labels_pos = labels[sampled_pos_inds_subset] N, num_classes = class_logits.shape box_regression = box_regression.reshape(N, box_regression.size(-1) // 4, 4) box_loss = F.smooth_l1_loss( box_regression[sampled_pos_inds_subset, labels_pos], regression_targets[sampled_pos_inds_subset], beta=1 / 9, reduction="sum", ) box_loss = box_loss / labels.numel() return classification_loss, box_loss def maskrcnn_inference(x, labels): # type: (Tensor, List[Tensor]) -> List[Tensor] """ From the results of the CNN, post process the masks by taking the mask corresponding to the class with max probability (which are of fixed size and directly output by the CNN) and return the masks in the mask field of the BoxList. Args: x (Tensor): the mask logits labels (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks corresponding to the predicted classes num_masks = x.shape[0] boxes_per_image = [label.shape[0] for label in labels] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] mask_prob = mask_prob.split(boxes_per_image, dim=0) return mask_prob def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M): # type: (Tensor, Tensor, Tensor, int) -> Tensor """ Given segmentation masks and the bounding boxes corresponding to the location of the masks in the image, this function crops and resizes the masks in the position defined by the boxes. This prepares the masks for them to be fed to the loss computation as the targets. """ matched_idxs = matched_idxs.to(boxes) rois = torch.cat([matched_idxs[:, None], boxes], dim=1) gt_masks = gt_masks[:, None].to(rois) return roi_align(gt_masks, rois, (M, M), 1.0)[:, 0] def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor """ Args: proposals (list[BoxList]) mask_logits (Tensor) targets (list[BoxList]) Return: mask_loss (Tensor): scalar tensor containing the loss """ discretization_size = mask_logits.shape[-1] # print(f'mask_logits:{mask_logits},gt_masks:{gt_masks},,gt_labels:{gt_labels}]') # print(f'mask discretization_size:{discretization_size}') labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)] # print(f'mask labels:{labels}') mask_targets = [ project_masks_on_boxes(m, p, i, discretization_size) for m, p, i in zip(gt_masks, proposals, mask_matched_idxs) ] labels = torch.cat(labels, dim=0) # print(f'mask labels1:{labels}') mask_targets = torch.cat(mask_targets, dim=0) # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it separately if mask_targets.numel() == 0: return mask_logits.sum() * 0 # print(f'mask_targets:{mask_targets.shape},mask_logits:{mask_logits.shape}') # print(f'mask_targets:{mask_targets}') mask_loss = F.binary_cross_entropy_with_logits( mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets ) # print(f'mask_loss:{mask_loss}') return mask_loss def keypoints_to_heatmap(keypoints, rois, heatmap_size): # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor] offset_x = rois[:, 0] offset_y = rois[:, 1] scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) offset_x = offset_x[:, None] offset_y = offset_y[:, None] scale_x = scale_x[:, None] scale_y = scale_y[:, None] x = keypoints[..., 0] y = keypoints[..., 1] x_boundary_inds = x == rois[:, 2][:, None] y_boundary_inds = y == rois[:, 3][:, None] x = (x - offset_x) * scale_x x = x.floor().long() y = (y - offset_y) * scale_y y = y.floor().long() x[x_boundary_inds] = heatmap_size - 1 y[y_boundary_inds] = heatmap_size - 1 valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) vis = keypoints[..., 2] > 0 valid = (valid_loc & vis).long() lin_ind = y * heatmap_size + x heatmaps = lin_ind * valid return heatmaps, valid def _onnx_heatmaps_to_keypoints( maps, maps_i, roi_map_width, roi_map_height, widths_i, heights_i, offset_x_i, offset_y_i ): num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64) width_correction = widths_i / roi_map_width height_correction = heights_i / roi_map_height roi_map = F.interpolate( maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode="bicubic", align_corners=False )[:, 0] w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64) pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1) x_int = pos % w y_int = (pos - x_int) // w x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * width_correction.to( dtype=torch.float32 ) y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * height_correction.to( dtype=torch.float32 ) xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32) xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32) xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32) xy_preds_i = torch.stack( [ xy_preds_i_0.to(dtype=torch.float32), xy_preds_i_1.to(dtype=torch.float32), xy_preds_i_2.to(dtype=torch.float32), ], 0, ) # TODO: simplify when indexing without rank will be supported by ONNX base = num_keypoints * num_keypoints + num_keypoints + 1 ind = torch.arange(num_keypoints) ind = ind.to(dtype=torch.int64) * base end_scores_i = ( roi_map.index_select(1, y_int.to(dtype=torch.int64)) .index_select(2, x_int.to(dtype=torch.int64)) .view(-1) .index_select(0, ind.to(dtype=torch.int64)) ) return xy_preds_i, end_scores_i @torch.jit._script_if_tracing def _onnx_heatmaps_to_keypoints_loop( maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, num_keypoints ): xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device) end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device) for i in range(int(rois.size(0))): xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints( maps, maps[i], widths_ceil[i], heights_ceil[i], widths[i], heights[i], offset_x[i], offset_y[i] ) xy_preds = torch.cat((xy_preds.to(dtype=torch.float32), xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0) end_scores = torch.cat( (end_scores.to(dtype=torch.float32), end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0 ) return xy_preds, end_scores def heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = widths.clamp(min=1) heights = heights.clamp(min=1) widths_ceil = widths.ceil() heights_ceil = heights.ceil() num_keypoints = maps.shape[1] if torchvision._is_tracing(): xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop( maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, torch.scalar_tensor(num_keypoints, dtype=torch.int64), ) return xy_preds.permute(0, 2, 1), end_scores xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device) end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device) for i in range(len(rois)): roi_map_width = int(widths_ceil[i].item()) roi_map_height = int(heights_ceil[i].item()) width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = F.interpolate( maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False )[:, 0] # roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1) x_int = pos % w y_int = torch.div(pos - x_int, w, rounding_mode="floor") # assert (roi_map_probs[k, y_int, x_int] == # roi_map_probs[k, :, :].max()) x = (x_int.float() + 0.5) * width_correction y = (y_int.float() + 0.5) * height_correction xy_preds[i, 0, :] = x + offset_x[i] xy_preds[i, 1, :] = y + offset_y[i] xy_preds[i, 2, :] = 1 end_scores[i, :] = roi_map[torch.arange(num_keypoints, device=roi_map.device), y_int, x_int] return xy_preds.permute(0, 2, 1), end_scores def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor N, K, H, W = keypoint_logits.shape if H != W: raise ValueError( f"keypoint_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}" ) discretization_size = H heatmaps = [] valid = [] for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs): kp = gt_kp_in_image[midx] heatmaps_per_image, valid_per_image = keypoints_to_heatmap(kp, proposals_per_image, discretization_size) heatmaps.append(heatmaps_per_image.view(-1)) valid.append(valid_per_image.view(-1)) keypoint_targets = torch.cat(heatmaps, dim=0) valid = torch.cat(valid, dim=0).to(dtype=torch.uint8) valid = torch.where(valid)[0] # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it sepaartely if keypoint_targets.numel() == 0 or len(valid) == 0: return keypoint_logits.sum() * 0 keypoint_logits = keypoint_logits.view(N * K, H * W) keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid]) return keypoint_loss def keypointrcnn_inference(x, boxes): # print(f'x:{x.shape}') # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]] kp_probs = [] kp_scores = [] boxes_per_image = [box.size(0) for box in boxes] x2 = x.split(boxes_per_image, dim=0) # print(f'x2:{x2}') for xx, bb in zip(x2, boxes): kp_prob, scores = heatmaps_to_keypoints(xx, bb) kp_probs.append(kp_prob) kp_scores.append(scores) return kp_probs, kp_scores def _onnx_expand_boxes(boxes, scale): # type: (Tensor, float) -> Tensor w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5 h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5 x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5 y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5 w_half = w_half.to(dtype=torch.float32) * scale h_half = h_half.to(dtype=torch.float32) * scale boxes_exp0 = x_c - w_half boxes_exp1 = y_c - h_half boxes_exp2 = x_c + w_half boxes_exp3 = y_c + h_half boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1) return boxes_exp # the next two functions should be merged inside Masker # but are kept here for the moment while we need them # temporarily for paste_mask_in_image def expand_boxes(boxes, scale): # type: (Tensor, float) -> Tensor if torchvision._is_tracing(): return _onnx_expand_boxes(boxes, scale) w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5 h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5 x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5 y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5 w_half *= scale h_half *= scale boxes_exp = torch.zeros_like(boxes) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp @torch.jit.unused def expand_masks_tracing_scale(M, padding): # type: (int, int) -> float return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32) def expand_masks(mask, padding): # type: (Tensor, int) -> Tuple[Tensor, float] M = mask.shape[-1] if torch._C._get_tracing_state(): # could not import is_tracing(), not sure why scale = expand_masks_tracing_scale(M, padding) else: scale = float(M + 2 * padding) / M padded_mask = F.pad(mask, (padding,) * 4) return padded_mask, scale def paste_mask_in_image(mask, box, im_h, im_w): # type: (Tensor, Tensor, int, int) -> Tensor TO_REMOVE = 1 w = int(box[2] - box[0] + TO_REMOVE) h = int(box[3] - box[1] + TO_REMOVE) w = max(w, 1) h = max(h, 1) # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, -1, -1)) # Resize mask mask = F.interpolate(mask, size=(h, w), mode="bilinear", align_corners=False) mask = mask[0][0] im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device) x_0 = max(box[0], 0) x_1 = min(box[2] + 1, im_w) y_0 = max(box[1], 0) y_1 = min(box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - box[1]): (y_1 - box[1]), (x_0 - box[0]): (x_1 - box[0])] return im_mask def _onnx_paste_mask_in_image(mask, box, im_h, im_w): one = torch.ones(1, dtype=torch.int64) zero = torch.zeros(1, dtype=torch.int64) w = box[2] - box[0] + one h = box[3] - box[1] + one w = torch.max(torch.cat((w, one))) h = torch.max(torch.cat((h, one))) # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, mask.size(0), mask.size(1))) # Resize mask mask = F.interpolate(mask, size=(int(h), int(w)), mode="bilinear", align_corners=False) mask = mask[0][0] x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero))) x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0)))) y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero))) y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0)))) unpaded_im_mask = mask[(y_0 - box[1]): (y_1 - box[1]), (x_0 - box[0]): (x_1 - box[0])] # TODO : replace below with a dynamic padding when support is added in ONNX # pad y zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1)) zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1)) concat_0 = torch.cat((zeros_y0, unpaded_im_mask.to(dtype=torch.float32), zeros_y1), 0)[0:im_h, :] # pad x zeros_x0 = torch.zeros(concat_0.size(0), x_0) zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1) im_mask = torch.cat((zeros_x0, concat_0, zeros_x1), 1)[:, :im_w] return im_mask @torch.jit._script_if_tracing def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w): res_append = torch.zeros(0, im_h, im_w) for i in range(masks.size(0)): mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w) mask_res = mask_res.unsqueeze(0) res_append = torch.cat((res_append, mask_res)) return res_append def paste_masks_in_image(masks, boxes, img_shape, padding=1): # type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor masks, scale = expand_masks(masks, padding=padding) boxes = expand_boxes(boxes, scale).to(dtype=torch.int64) im_h, im_w = img_shape if torchvision._is_tracing(): return _onnx_paste_masks_in_image_loop( masks, boxes, torch.scalar_tensor(im_h, dtype=torch.int64), torch.scalar_tensor(im_w, dtype=torch.int64) )[:, None] res = [paste_mask_in_image(m[0], b, im_h, im_w) for m, b in zip(masks, boxes)] if len(res) > 0: ret = torch.stack(res, dim=0)[:, None] else: ret = masks.new_empty((0, 1, im_h, im_w)) return ret class RoIHeads(nn.Module): __annotations__ = { "box_coder": det_utils.BoxCoder, "proposal_matcher": det_utils.Matcher, "fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler, } def __init__( self, box_roi_pool, box_head, box_predictor, # Faster R-CNN training fg_iou_thresh, bg_iou_thresh, batch_size_per_image, positive_fraction, bbox_reg_weights, # Faster R-CNN inference score_thresh, nms_thresh, detections_per_img, # Mask mask_roi_pool=None, mask_head=None, mask_predictor=None, keypoint_roi_pool=None, keypoint_head=None, keypoint_predictor=None, wirepoint_roi_pool=None, wirepoint_head=None, wirepoint_predictor=None, ): super().__init__() self.box_similarity = box_ops.box_iou # assign ground-truth boxes for each proposal self.proposal_matcher = det_utils.Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False) self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction) if bbox_reg_weights is None: bbox_reg_weights = (10.0, 10.0, 5.0, 5.0) self.box_coder = det_utils.BoxCoder(bbox_reg_weights) self.box_roi_pool = box_roi_pool self.box_head = box_head self.box_predictor = box_predictor self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.mask_roi_pool = mask_roi_pool self.mask_head = mask_head self.mask_predictor = mask_predictor self.keypoint_roi_pool = keypoint_roi_pool self.keypoint_head = keypoint_head self.keypoint_predictor = keypoint_predictor self.wirepoint_roi_pool = wirepoint_roi_pool self.wirepoint_head = wirepoint_head self.wirepoint_predictor = wirepoint_predictor def has_mask(self): if self.mask_roi_pool is None: return False if self.mask_head is None: return False if self.mask_predictor is None: return False return True def has_keypoint(self): if self.keypoint_roi_pool is None: return False if self.keypoint_head is None: return False if self.keypoint_predictor is None: return False return True def has_wirepoint(self): if self.wirepoint_roi_pool is None: print(f'wirepoint_roi_pool is None') return False if self.wirepoint_head is None: print(f'wirepoint_head is None') return False if self.wirepoint_predictor is None: print(f'wirepoint_roi_predictor is None') return False return True def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels): # type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]] matched_idxs = [] labels = [] for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels): if gt_boxes_in_image.numel() == 0: # Background image device = proposals_in_image.device clamped_matched_idxs_in_image = torch.zeros( (proposals_in_image.shape[0],), dtype=torch.int64, device=device ) labels_in_image = torch.zeros((proposals_in_image.shape[0],), dtype=torch.int64, device=device) else: # set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image) matched_idxs_in_image = self.proposal_matcher(match_quality_matrix) clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0) labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image] labels_in_image = labels_in_image.to(dtype=torch.int64) # Label background (below the low threshold) bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD labels_in_image[bg_inds] = 0 # Label ignore proposals (between low and high thresholds) ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS labels_in_image[ignore_inds] = -1 # -1 is ignored by sampler matched_idxs.append(clamped_matched_idxs_in_image) labels.append(labels_in_image) return matched_idxs, labels def subsample(self, labels): # type: (List[Tensor]) -> List[Tensor] sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) sampled_inds = [] for img_idx, (pos_inds_img, neg_inds_img) in enumerate(zip(sampled_pos_inds, sampled_neg_inds)): img_sampled_inds = torch.where(pos_inds_img | neg_inds_img)[0] sampled_inds.append(img_sampled_inds) return sampled_inds def add_gt_proposals(self, proposals, gt_boxes): # type: (List[Tensor], List[Tensor]) -> List[Tensor] proposals = [torch.cat((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)] return proposals def check_targets(self, targets): # type: (Optional[List[Dict[str, Tensor]]]) -> None if targets is None: raise ValueError("targets should not be None") if not all(["boxes" in t for t in targets]): raise ValueError("Every element of targets should have a boxes key") if not all(["labels" in t for t in targets]): raise ValueError("Every element of targets should have a labels key") if self.has_mask(): if not all(["masks" in t for t in targets]): raise ValueError("Every element of targets should have a masks key") def select_training_samples( self, proposals, # type: List[Tensor] targets, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]] self.check_targets(targets) if targets is None: raise ValueError("targets should not be None") dtype = proposals[0].dtype device = proposals[0].device gt_boxes = [t["boxes"].to(dtype) for t in targets] gt_labels = [t["labels"] for t in targets] # append ground-truth bboxes to propos proposals = self.add_gt_proposals(proposals, gt_boxes) # get matching gt indices for each proposal matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels) # sample a fixed proportion of positive-negative proposals sampled_inds = self.subsample(labels) matched_gt_boxes = [] num_images = len(proposals) for img_id in range(num_images): img_sampled_inds = sampled_inds[img_id] proposals[img_id] = proposals[img_id][img_sampled_inds] labels[img_id] = labels[img_id][img_sampled_inds] matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds] gt_boxes_in_image = gt_boxes[img_id] if gt_boxes_in_image.numel() == 0: gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device) matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]]) regression_targets = self.box_coder.encode(matched_gt_boxes, proposals) return proposals, matched_idxs, labels, regression_targets def postprocess_detections( self, class_logits, # type: Tensor box_regression, # type: Tensor proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]] device = class_logits.device num_classes = class_logits.shape[-1] boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals] pred_boxes = self.box_coder.decode(box_regression, proposals) pred_scores = F.softmax(class_logits, -1) pred_boxes_list = pred_boxes.split(boxes_per_image, 0) pred_scores_list = pred_scores.split(boxes_per_image, 0) all_boxes = [] all_scores = [] all_labels = [] for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes): boxes = box_ops.clip_boxes_to_image(boxes, image_shape) # create labels for each prediction labels = torch.arange(num_classes, device=device) labels = labels.view(1, -1).expand_as(scores) # remove predictions with the background label boxes = boxes[:, 1:] scores = scores[:, 1:] labels = labels[:, 1:] # batch everything, by making every class prediction be a separate instance boxes = boxes.reshape(-1, 4) scores = scores.reshape(-1) labels = labels.reshape(-1) # remove low scoring boxes inds = torch.where(scores > self.score_thresh)[0] boxes, scores, labels = boxes[inds], scores[inds], labels[inds] # remove empty boxes keep = box_ops.remove_small_boxes(boxes, min_size=1e-2) boxes, scores, labels = boxes[keep], scores[keep], labels[keep] # non-maximum suppression, independently done per class keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh) # keep only topk scoring predictions keep = keep[: self.detections_per_img] boxes, scores, labels = boxes[keep], scores[keep], labels[keep] all_boxes.append(boxes) all_scores.append(scores) all_labels.append(labels) return all_boxes, all_scores, all_labels def forward( self, features, # type: Dict[str, Tensor] proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] targets=None, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]] """ Args: features (List[Tensor]) proposals (List[Tensor[N, 4]]) image_shapes (List[Tuple[H, W]]) targets (List[Dict]) """ if targets is not None: for t in targets: # TODO: https://github.com/pytorch/pytorch/issues/26731 floating_point_types = (torch.float, torch.double, torch.half) if not t["boxes"].dtype in floating_point_types: raise TypeError(f"target boxes must of float type, instead got {t['boxes'].dtype}") if not t["labels"].dtype == torch.int64: raise TypeError(f"target labels must of int64 type, instead got {t['labels'].dtype}") if self.has_keypoint(): if not t["keypoints"].dtype == torch.float32: raise TypeError(f"target keypoints must of float type, instead got {t['keypoints'].dtype}") if self.training: proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets) else: labels = None regression_targets = None matched_idxs = None box_features = self.box_roi_pool(features, proposals, image_shapes) box_features = self.box_head(box_features) class_logits, box_regression = self.box_predictor(box_features) result: List[Dict[str, torch.Tensor]] = [] losses = {} if self.training: if labels is None: raise ValueError("labels cannot be None") if regression_targets is None: raise ValueError("regression_targets cannot be None") loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets) losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg} else: print('result append boxes!!!') boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes) num_images = len(boxes) for i in range(num_images): result.append( { "boxes": boxes[i], "labels": labels[i], "scores": scores[i], } ) if self.has_mask(): mask_proposals = [p["boxes"] for p in result] if self.training: if matched_idxs is None: raise ValueError("if in training, matched_idxs should not be None") # during training, only focus on positive boxes num_images = len(proposals) mask_proposals = [] pos_matched_idxs = [] for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] mask_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None if self.mask_roi_pool is not None: mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes) mask_features = self.mask_head(mask_features) mask_logits = self.mask_predictor(mask_features) else: raise Exception("Expected mask_roi_pool to be not None") loss_mask = {} if self.training: if targets is None or pos_matched_idxs is None or mask_logits is None: raise ValueError("targets, pos_matched_idxs, mask_logits cannot be None when training") gt_masks = [t["masks"] for t in targets] gt_labels = [t["labels"] for t in targets] rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs) loss_mask = {"loss_mask": rcnn_loss_mask} else: labels = [r["labels"] for r in result] masks_probs = maskrcnn_inference(mask_logits, labels) for mask_prob, r in zip(masks_probs, result): r["masks"] = mask_prob losses.update(loss_mask) # keep none checks in if conditional so torchscript will conditionally # compile each branch if self.has_keypoint(): keypoint_proposals = [p["boxes"] for p in result] if self.training: # during training, only focus on positive boxes num_images = len(proposals) keypoint_proposals = [] pos_matched_idxs = [] if matched_idxs is None: raise ValueError("if in trainning, matched_idxs should not be None") for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] keypoint_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes) # tmp = keypoint_features[0][0] # plt.imshow(tmp.detach().numpy()) # print(f'keypoint_features from roi_pool:{keypoint_features.shape}') keypoint_features = self.keypoint_head(keypoint_features) # print(f'keypoint_features:{keypoint_features.shape}') tmp = keypoint_features[0][0] plt.imshow(tmp.detach().numpy()) keypoint_logits = self.keypoint_predictor(keypoint_features) # print(f'keypoint_logits:{keypoint_logits.shape}') """ 接wirenet """ loss_keypoint = {} if self.training: if targets is None or pos_matched_idxs is None: raise ValueError("both targets and pos_matched_idxs should not be None when in training mode") gt_keypoints = [t["keypoints"] for t in targets] rcnn_loss_keypoint = keypointrcnn_loss( keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs ) loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint} else: if keypoint_logits is None or keypoint_proposals is None: raise ValueError( "both keypoint_logits and keypoint_proposals should not be None when not in training mode" ) keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals) for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result): r["keypoints"] = keypoint_prob r["keypoints_scores"] = kps losses.update(loss_keypoint) if self.has_wirepoint(): print(f'wirepoint result:{result}') wirepoint_proposals = [p["boxes"] for p in result] if self.training: # during training, only focus on positive boxes num_images = len(proposals) wirepoint_proposals = [] pos_matched_idxs = [] if matched_idxs is None: raise ValueError("if in trainning, matched_idxs should not be None") for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] wirepoint_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None # print(f'proposals:{len(proposals)}') print(f'wirepoint_proposals:{wirepoint_proposals}') wirepoint_features = self.wirepoint_roi_pool(features, wirepoint_proposals, image_shapes) # tmp = keypoint_features[0][0] # plt.imshow(tmp.detach().numpy()) print(f'wirepoint_features from roi_pool:{wirepoint_features.shape}') outputs, wirepoint_features = self.wirepoint_head(wirepoint_features) print(f'outputs1 from head:{outputs.shape}') outputs = merge_features(outputs, wirepoint_proposals) # wirepoint_features = merge_features(wirepoint_features, wirepoint_proposals) print(f'outpust:{outputs.shape}') wirepoint_logits = self.wirepoint_predictor(inputs=outputs, features=wirepoint_features, targets=targets) x, y, idx, jcs, n_batch, ps, n_out_line, n_out_junc = wirepoint_logits # print(f'keypoint_features:{wirepoint_features.shape}') if self.training: if targets is None or pos_matched_idxs is None: raise ValueError("both targets and pos_matched_idxs should not be None when in training mode") loss_weight = {'junc_map': 8.0, 'line_map': 0.5, 'junc_offset': 0.25, 'lpos': 1, 'lneg': 1} rcnn_loss_wirepoint = wirepoint_head_line_loss(targets, outputs, x, y, idx, loss_weight) loss_wirepoint = {"loss_wirepoint": rcnn_loss_wirepoint} else: pred = wirepoint_inference(x, idx, jcs, n_batch, ps, n_out_line, n_out_junc) result.append(pred) loss_wirepoint = {} # loss_weight = {'junc_map': 8.0, 'line_map': 0.5, 'junc_offset': 0.25, 'lpos': 1, 'lneg': 1} # rcnn_loss_wirepoint = wirepoint_head_line_loss(targets, outputs, x, y, idx, loss_weight) # loss_wirepoint = {"loss_wirepoint": rcnn_loss_wirepoint} # tmp = wirepoint_features[0][0] # plt.imshow(tmp.detach().numpy()) # wirepoint_logits = self.wirepoint_predictor((outputs,wirepoint_features)) # print(f'keypoint_logits:{wirepoint_logits.shape}') # loss_wirepoint = {} lm # result=wirepoint_logits # result.append(pred) lm losses.update(loss_wirepoint) # print(f"result{result}") # print(f"losses{losses}") return result, losses # def merge_features(features, proposals): # # 假设 roi_pool_features 是你的输入张量,形状为 [600, 256, 128, 128] # # # 使用 torch.split 按照每个图像的提议数量分割 features # proposals_count = sum([p.size(0) for p in proposals]) # features_size = features.size(0) # # (f'proposals sum:{proposals_count},features batch:{features.size(0)}') # if proposals_count != features_size: # raise ValueError("The length of proposals must match the batch size of features.") # # split_features = [] # start_idx = 0 # print(f"proposals:{proposals}") # for proposal in proposals: # # 提取当前图像的特征 # current_features = features[start_idx:start_idx + proposal.size(0)] # # print(f'current_features:{current_features.shape}') # split_features.append(current_features) # start_idx += 1 # # features_imgs = [] # for features_per_img in split_features: # features_per_img, _ = torch.max(features_per_img, dim=0, keepdim=True) # features_imgs.append(features_per_img) # # merged_features = torch.cat(features_imgs, dim=0) # # print(f' merged_features:{merged_features.shape}') # return merged_features def merge_features(features, proposals): print(f'features in merge_features:{features.shape}') print(f'proposals:{len(proposals)}') def diagnose_input(features, proposals): """诊断输入数据""" print("Input Diagnostics:") print(f"Features type: {type(features)}, shape: {features.shape}") print(f"Proposals type: {type(proposals)}, length: {len(proposals)}") for i, p in enumerate(proposals): print(f"Proposal {i} shape: {p.shape}") def validate_inputs(features, proposals): """验证输入的有效性""" if features is None or proposals is None: raise ValueError("Features or proposals cannot be None") proposals_count = sum([p.size(0) for p in proposals]) features_size = features.size(0) if proposals_count != features_size: raise ValueError( f"Proposals count ({proposals_count}) must match features batch size ({features_size})" ) def safe_max_reduction(features_per_img,proposals): print(f'proposal:{proposals.shape},features_per_img:{features_per_img.shape}') """安全的最大值压缩""" if features_per_img.numel() == 0: return torch.zeros_like(features_per_img).unsqueeze(0) for feature_map,roi in zip(features_per_img,proposals): print(f'feature_map:{feature_map.shape},roi:{roi}') roi_off_x=roi[0] roi_off_y=roi[1] try: # 沿着第0维求最大值,保持维度 max_features, _ = torch.max(features_per_img, dim=0, keepdim=True) return max_features except Exception as e: print(f"Max reduction error: {e}") return features_per_img.unsqueeze(0) try: # 诊断输入(可选) # diagnose_input(features, proposals) # 验证输入 validate_inputs(features, proposals) # 分割特征 split_features = [] start_idx = 0 for proposal in proposals: # 提取当前图像的特征 current_features = features[start_idx:start_idx + proposal.size(0)] split_features.append(current_features) start_idx += proposal.size(0) # 每张图像特征压缩 features_imgs = [] print(f'split_features:{len(split_features)}') for features_per_img,proposal in zip(split_features,proposals): compressed_features = safe_max_reduction(features_per_img,proposal) features_imgs.append(compressed_features) # 合并特征 merged_features = torch.cat(features_imgs, dim=0) return merged_features except Exception as e: print(f"Error in merge_features: {e}") # 返回原始特征或None return features