from typing import List, Optional, Tuple import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms import _functional_pil as _FP from torchvision.tv_tensors import BoundingBoxFormat from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal, is_pure_tensor def get_dimensions(inpt: torch.Tensor) -> List[int]: if torch.jit.is_scripting(): return get_dimensions_image(inpt) _log_api_usage_once(get_dimensions) kernel = _get_kernel(get_dimensions, type(inpt)) return kernel(inpt) @_register_kernel_internal(get_dimensions, torch.Tensor) @_register_kernel_internal(get_dimensions, tv_tensors.Image, tv_tensor_wrapper=False) def get_dimensions_image(image: torch.Tensor) -> List[int]: chw = list(image.shape[-3:]) ndims = len(chw) if ndims == 3: return chw elif ndims == 2: chw.insert(0, 1) return chw else: raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}") _get_dimensions_image_pil = _register_kernel_internal(get_dimensions, PIL.Image.Image)(_FP.get_dimensions) @_register_kernel_internal(get_dimensions, tv_tensors.Video, tv_tensor_wrapper=False) def get_dimensions_video(video: torch.Tensor) -> List[int]: return get_dimensions_image(video) def get_num_channels(inpt: torch.Tensor) -> int: if torch.jit.is_scripting(): return get_num_channels_image(inpt) _log_api_usage_once(get_num_channels) kernel = _get_kernel(get_num_channels, type(inpt)) return kernel(inpt) @_register_kernel_internal(get_num_channels, torch.Tensor) @_register_kernel_internal(get_num_channels, tv_tensors.Image, tv_tensor_wrapper=False) def get_num_channels_image(image: torch.Tensor) -> int: chw = image.shape[-3:] ndims = len(chw) if ndims == 3: return chw[0] elif ndims == 2: return 1 else: raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}") _get_num_channels_image_pil = _register_kernel_internal(get_num_channels, PIL.Image.Image)(_FP.get_image_num_channels) @_register_kernel_internal(get_num_channels, tv_tensors.Video, tv_tensor_wrapper=False) def get_num_channels_video(video: torch.Tensor) -> int: return get_num_channels_image(video) # We changed the names to ensure it can be used not only for images but also videos. Thus, we just alias it without # deprecating the old names. get_image_num_channels = get_num_channels def get_size(inpt: torch.Tensor) -> List[int]: if torch.jit.is_scripting(): return get_size_image(inpt) _log_api_usage_once(get_size) kernel = _get_kernel(get_size, type(inpt)) return kernel(inpt) @_register_kernel_internal(get_size, torch.Tensor) @_register_kernel_internal(get_size, tv_tensors.Image, tv_tensor_wrapper=False) def get_size_image(image: torch.Tensor) -> List[int]: hw = list(image.shape[-2:]) ndims = len(hw) if ndims == 2: return hw else: raise TypeError(f"Input tensor should have at least two dimensions, but got {ndims}") @_register_kernel_internal(get_size, PIL.Image.Image) def _get_size_image_pil(image: PIL.Image.Image) -> List[int]: width, height = _FP.get_image_size(image) return [height, width] @_register_kernel_internal(get_size, tv_tensors.Video, tv_tensor_wrapper=False) def get_size_video(video: torch.Tensor) -> List[int]: return get_size_image(video) @_register_kernel_internal(get_size, tv_tensors.Mask, tv_tensor_wrapper=False) def get_size_mask(mask: torch.Tensor) -> List[int]: return get_size_image(mask) @_register_kernel_internal(get_size, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False) def get_size_bounding_boxes(bounding_box: tv_tensors.BoundingBoxes) -> List[int]: return list(bounding_box.canvas_size) def get_num_frames(inpt: torch.Tensor) -> int: if torch.jit.is_scripting(): return get_num_frames_video(inpt) _log_api_usage_once(get_num_frames) kernel = _get_kernel(get_num_frames, type(inpt)) return kernel(inpt) @_register_kernel_internal(get_num_frames, torch.Tensor) @_register_kernel_internal(get_num_frames, tv_tensors.Video, tv_tensor_wrapper=False) def get_num_frames_video(video: torch.Tensor) -> int: return video.shape[-4] def _xywh_to_xyxy(xywh: torch.Tensor, inplace: bool) -> torch.Tensor: xyxy = xywh if inplace else xywh.clone() xyxy[..., 2:] += xyxy[..., :2] return xyxy def _xyxy_to_xywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor: xywh = xyxy if inplace else xyxy.clone() xywh[..., 2:] -= xywh[..., :2] return xywh def _cxcywh_to_xyxy(cxcywh: torch.Tensor, inplace: bool) -> torch.Tensor: if not inplace: cxcywh = cxcywh.clone() # Trick to do fast division by 2 and ceil, without casting. It produces the same result as # `torchvision.ops._box_convert._box_cxcywh_to_xyxy`. half_wh = cxcywh[..., 2:].div(-2, rounding_mode=None if cxcywh.is_floating_point() else "floor").abs_() # (cx - width / 2) = x1, same for y1 cxcywh[..., :2].sub_(half_wh) # (x1 + width) = x2, same for y2 cxcywh[..., 2:].add_(cxcywh[..., :2]) return cxcywh def _xyxy_to_cxcywh(xyxy: torch.Tensor, inplace: bool) -> torch.Tensor: if not inplace: xyxy = xyxy.clone() # (x2 - x1) = width, same for height xyxy[..., 2:].sub_(xyxy[..., :2]) # (x1 * 2 + width) / 2 = x1 + width / 2 = x1 + (x2-x1)/2 = (x1 + x2)/2 = cx, same for cy xyxy[..., :2].mul_(2).add_(xyxy[..., 2:]).div_(2, rounding_mode=None if xyxy.is_floating_point() else "floor") return xyxy def _convert_bounding_box_format( bounding_boxes: torch.Tensor, old_format: BoundingBoxFormat, new_format: BoundingBoxFormat, inplace: bool = False ) -> torch.Tensor: if new_format == old_format: return bounding_boxes # TODO: Add _xywh_to_cxcywh and _cxcywh_to_xywh to improve performance if old_format == BoundingBoxFormat.XYWH: bounding_boxes = _xywh_to_xyxy(bounding_boxes, inplace) elif old_format == BoundingBoxFormat.CXCYWH: bounding_boxes = _cxcywh_to_xyxy(bounding_boxes, inplace) if new_format == BoundingBoxFormat.XYWH: bounding_boxes = _xyxy_to_xywh(bounding_boxes, inplace) elif new_format == BoundingBoxFormat.CXCYWH: bounding_boxes = _xyxy_to_cxcywh(bounding_boxes, inplace) return bounding_boxes def convert_bounding_box_format( inpt: torch.Tensor, old_format: Optional[BoundingBoxFormat] = None, new_format: Optional[BoundingBoxFormat] = None, inplace: bool = False, ) -> torch.Tensor: """See :func:`~torchvision.transforms.v2.ConvertBoundingBoxFormat` for details.""" # This being a kernel / functional hybrid, we need an option to pass `old_format` explicitly for pure tensor # inputs as well as extract it from `tv_tensors.BoundingBoxes` inputs. However, putting a default value on # `old_format` means we also need to put one on `new_format` to have syntactically correct Python. Here we mimic the # default error that would be thrown if `new_format` had no default value. if new_format is None: raise TypeError("convert_bounding_box_format() missing 1 required argument: 'new_format'") if not torch.jit.is_scripting(): _log_api_usage_once(convert_bounding_box_format) if isinstance(old_format, str): old_format = BoundingBoxFormat[old_format.upper()] if isinstance(new_format, str): new_format = BoundingBoxFormat[new_format.upper()] if torch.jit.is_scripting() or is_pure_tensor(inpt): if old_format is None: raise ValueError("For pure tensor inputs, `old_format` has to be passed.") return _convert_bounding_box_format(inpt, old_format=old_format, new_format=new_format, inplace=inplace) elif isinstance(inpt, tv_tensors.BoundingBoxes): if old_format is not None: raise ValueError("For bounding box tv_tensor inputs, `old_format` must not be passed.") output = _convert_bounding_box_format( inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=new_format, inplace=inplace ) return tv_tensors.wrap(output, like=inpt, format=new_format) else: raise TypeError( f"Input can either be a plain tensor or a bounding box tv_tensor, but got {type(inpt)} instead." ) def _clamp_bounding_boxes( bounding_boxes: torch.Tensor, format: BoundingBoxFormat, canvas_size: Tuple[int, int] ) -> torch.Tensor: # TODO: Investigate if it makes sense from a performance perspective to have an implementation for every # BoundingBoxFormat instead of converting back and forth in_dtype = bounding_boxes.dtype bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float() xyxy_boxes = convert_bounding_box_format( bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True ) xyxy_boxes[..., 0::2].clamp_(min=0, max=canvas_size[1]) xyxy_boxes[..., 1::2].clamp_(min=0, max=canvas_size[0]) out_boxes = convert_bounding_box_format( xyxy_boxes, old_format=BoundingBoxFormat.XYXY, new_format=format, inplace=True ) return out_boxes.to(in_dtype) def clamp_bounding_boxes( inpt: torch.Tensor, format: Optional[BoundingBoxFormat] = None, canvas_size: Optional[Tuple[int, int]] = None, ) -> torch.Tensor: """See :func:`~torchvision.transforms.v2.ClampBoundingBoxes` for details.""" if not torch.jit.is_scripting(): _log_api_usage_once(clamp_bounding_boxes) if torch.jit.is_scripting() or is_pure_tensor(inpt): if format is None or canvas_size is None: raise ValueError("For pure tensor inputs, `format` and `canvas_size` have to be passed.") return _clamp_bounding_boxes(inpt, format=format, canvas_size=canvas_size) elif isinstance(inpt, tv_tensors.BoundingBoxes): if format is not None or canvas_size is not None: raise ValueError("For bounding box tv_tensor inputs, `format` and `canvas_size` must not be passed.") output = _clamp_bounding_boxes(inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size) return tv_tensors.wrap(output, like=inpt) else: raise TypeError( f"Input can either be a plain tensor or a bounding box tv_tensor, but got {type(inpt)} instead." )