import torch from torchvision.utils import draw_bounding_boxes from torchvision import transforms import matplotlib.pyplot as plt import numpy as np def c(score): # 根据分数返回颜色的函数,这里仅作示例,您可以根据需要修改 return (1, 0, 0) if score > 0.9 else (0, 1, 0) def postprocess(lines, scores, diag_threshold, min_score, remove_overlaps): # 假设的后处理函数,用于过滤线段 nlines = [] nscores = [] for line, score in zip(lines, scores): if score >= min_score: nlines.append(line) nscores.append(score) return np.array(nlines), np.array(nscores) def show_line(img, pred, epoch, writer): im = img.permute(1, 2, 0).cpu().numpy() # 绘制边界框 boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), pred[0]["boxes"], colors="yellow", width=1).permute(1, 2, 0).cpu().numpy() H = pred[-1]['wires'] lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2] scores = H["score"][0].cpu().numpy() print(f"Lines before deduplication: {len(lines)}") # 移除重复的线段 for i in range(1, len(lines)): if (lines[i] == lines[0]).all(): lines = lines[:i] scores = scores[:i] break print(f"Lines after deduplication: {len(lines)}") # 后处理线段以移除重叠的线段 diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5 nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False) print(f"Lines after postprocessing: {len(nlines)}") # 创建一个新的图像并绘制线段和边界框 fig, ax = plt.subplots(figsize=(boxed_image.shape[1] / 100, boxed_image.shape[0] / 100)) ax.imshow(boxed_image) ax.set_axis_off() plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5} for (a, b), s in zip(nlines, nscores): if s < 0.85: # 调整阈值以筛选显示的线段 continue plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s) plt.scatter(a[1], a[0], **PLTOPTS) plt.scatter(b[1], b[0], **PLTOPTS) plt.tight_layout() fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape( fig.canvas.get_width_height()[::-1] + (3,)) plt.close() img2 = transforms.ToTensor()(image_from_plot) writer.add_image("output_with_boxes_and_lines", img2, epoch) print("Image with boxes and lines added to TensorBoard.")