from functools import partial
from typing import Any, Optional, Sequence

import torch
from torch import nn
from torch.nn import functional as F

from ...transforms._presets import SemanticSegmentation
from .._api import register_model, Weights, WeightsEnum
from .._meta import _VOC_CATEGORIES
from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3
from ..resnet import ResNet, resnet101, ResNet101_Weights, resnet50, ResNet50_Weights
from ._utils import _SimpleSegmentationModel
from .fcn import FCNHead


__all__ = [
    "DeepLabV3",
    "DeepLabV3_ResNet50_Weights",
    "DeepLabV3_ResNet101_Weights",
    "DeepLabV3_MobileNet_V3_Large_Weights",
    "deeplabv3_mobilenet_v3_large",
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
]


class DeepLabV3(_SimpleSegmentationModel):
    """
    Implements DeepLabV3 model from
    `"Rethinking Atrous Convolution for Semantic Image Segmentation"
    <https://arxiv.org/abs/1706.05587>`_.

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "out" for the last feature map used, and "aux" if an auxiliary classifier
            is used.
        classifier (nn.Module): module that takes the "out" element returned from
            the backbone and returns a dense prediction.
        aux_classifier (nn.Module, optional): auxiliary classifier used during training
    """

    pass


class DeepLabHead(nn.Sequential):
    def __init__(self, in_channels: int, num_classes: int, atrous_rates: Sequence[int] = (12, 24, 36)) -> None:
        super().__init__(
            ASPP(in_channels, atrous_rates),
            nn.Conv2d(256, 256, 3, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, num_classes, 1),
        )


class ASPPConv(nn.Sequential):
    def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None:
        modules = [
            nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
        ]
        super().__init__(*modules)


class ASPPPooling(nn.Sequential):
    def __init__(self, in_channels: int, out_channels: int) -> None:
        super().__init__(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        size = x.shape[-2:]
        for mod in self:
            x = mod(x)
        return F.interpolate(x, size=size, mode="bilinear", align_corners=False)


class ASPP(nn.Module):
    def __init__(self, in_channels: int, atrous_rates: Sequence[int], out_channels: int = 256) -> None:
        super().__init__()
        modules = []
        modules.append(
            nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU())
        )

        rates = tuple(atrous_rates)
        for rate in rates:
            modules.append(ASPPConv(in_channels, out_channels, rate))

        modules.append(ASPPPooling(in_channels, out_channels))

        self.convs = nn.ModuleList(modules)

        self.project = nn.Sequential(
            nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Dropout(0.5),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        _res = []
        for conv in self.convs:
            _res.append(conv(x))
        res = torch.cat(_res, dim=1)
        return self.project(res)


def _deeplabv3_resnet(
    backbone: ResNet,
    num_classes: int,
    aux: Optional[bool],
) -> DeepLabV3:
    return_layers = {"layer4": "out"}
    if aux:
        return_layers["layer3"] = "aux"
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)

    aux_classifier = FCNHead(1024, num_classes) if aux else None
    classifier = DeepLabHead(2048, num_classes)
    return DeepLabV3(backbone, classifier, aux_classifier)


_COMMON_META = {
    "categories": _VOC_CATEGORIES,
    "min_size": (1, 1),
    "_docs": """
        These weights were trained on a subset of COCO, using only the 20 categories that are present in the Pascal VOC
        dataset.
    """,
}


class DeepLabV3_ResNet50_Weights(WeightsEnum):
    COCO_WITH_VOC_LABELS_V1 = Weights(
        url="https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth",
        transforms=partial(SemanticSegmentation, resize_size=520),
        meta={
            **_COMMON_META,
            "num_params": 42004074,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50",
            "_metrics": {
                "COCO-val2017-VOC-labels": {
                    "miou": 66.4,
                    "pixel_acc": 92.4,
                }
            },
            "_ops": 178.722,
            "_file_size": 160.515,
        },
    )
    DEFAULT = COCO_WITH_VOC_LABELS_V1


class DeepLabV3_ResNet101_Weights(WeightsEnum):
    COCO_WITH_VOC_LABELS_V1 = Weights(
        url="https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth",
        transforms=partial(SemanticSegmentation, resize_size=520),
        meta={
            **_COMMON_META,
            "num_params": 60996202,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101",
            "_metrics": {
                "COCO-val2017-VOC-labels": {
                    "miou": 67.4,
                    "pixel_acc": 92.4,
                }
            },
            "_ops": 258.743,
            "_file_size": 233.217,
        },
    )
    DEFAULT = COCO_WITH_VOC_LABELS_V1


class DeepLabV3_MobileNet_V3_Large_Weights(WeightsEnum):
    COCO_WITH_VOC_LABELS_V1 = Weights(
        url="https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth",
        transforms=partial(SemanticSegmentation, resize_size=520),
        meta={
            **_COMMON_META,
            "num_params": 11029328,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_large",
            "_metrics": {
                "COCO-val2017-VOC-labels": {
                    "miou": 60.3,
                    "pixel_acc": 91.2,
                }
            },
            "_ops": 10.452,
            "_file_size": 42.301,
        },
    )
    DEFAULT = COCO_WITH_VOC_LABELS_V1


def _deeplabv3_mobilenetv3(
    backbone: MobileNetV3,
    num_classes: int,
    aux: Optional[bool],
) -> DeepLabV3:
    backbone = backbone.features
    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
    out_pos = stage_indices[-1]  # use C5 which has output_stride = 16
    out_inplanes = backbone[out_pos].out_channels
    aux_pos = stage_indices[-4]  # use C2 here which has output_stride = 8
    aux_inplanes = backbone[aux_pos].out_channels
    return_layers = {str(out_pos): "out"}
    if aux:
        return_layers[str(aux_pos)] = "aux"
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)

    aux_classifier = FCNHead(aux_inplanes, num_classes) if aux else None
    classifier = DeepLabHead(out_inplanes, num_classes)
    return DeepLabV3(backbone, classifier, aux_classifier)


@register_model()
@handle_legacy_interface(
    weights=("pretrained", DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
def deeplabv3_resnet50(
    *,
    weights: Optional[DeepLabV3_ResNet50_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    aux_loss: Optional[bool] = None,
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    **kwargs: Any,
) -> DeepLabV3:
    """Constructs a DeepLabV3 model with a ResNet-50 backbone.

    .. betastatus:: segmentation module

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the
            backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet50_Weights
        :members:
    """
    weights = DeepLabV3_ResNet50_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
        aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
    elif num_classes is None:
        num_classes = 21

    backbone = resnet50(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
    model = _deeplabv3_resnet(backbone, num_classes, aux_loss)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))

    return model


@register_model()
@handle_legacy_interface(
    weights=("pretrained", DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1),
    weights_backbone=("pretrained_backbone", ResNet101_Weights.IMAGENET1K_V1),
)
def deeplabv3_resnet101(
    *,
    weights: Optional[DeepLabV3_ResNet101_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    aux_loss: Optional[bool] = None,
    weights_backbone: Optional[ResNet101_Weights] = ResNet101_Weights.IMAGENET1K_V1,
    **kwargs: Any,
) -> DeepLabV3:
    """Constructs a DeepLabV3 model with a ResNet-101 backbone.

    .. betastatus:: segmentation module

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.ResNet101_Weights`, optional): The pretrained weights for the
            backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_ResNet101_Weights
        :members:
    """
    weights = DeepLabV3_ResNet101_Weights.verify(weights)
    weights_backbone = ResNet101_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
        aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
    elif num_classes is None:
        num_classes = 21

    backbone = resnet101(weights=weights_backbone, replace_stride_with_dilation=[False, True, True])
    model = _deeplabv3_resnet(backbone, num_classes, aux_loss)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))

    return model


@register_model()
@handle_legacy_interface(
    weights=("pretrained", DeepLabV3_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
def deeplabv3_mobilenet_v3_large(
    *,
    weights: Optional[DeepLabV3_MobileNet_V3_Large_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    aux_loss: Optional[bool] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    **kwargs: Any,
) -> DeepLabV3:
    """Constructs a DeepLabV3 model with a MobileNetV3-Large backbone.

    Reference: `Rethinking Atrous Convolution for Semantic Image Segmentation <https://arxiv.org/abs/1706.05587>`__.

    Args:
        weights (:class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        aux_loss (bool, optional): If True, it uses an auxiliary loss
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained weights
            for the backbone
        **kwargs: unused

    .. autoclass:: torchvision.models.segmentation.DeepLabV3_MobileNet_V3_Large_Weights
        :members:
    """
    weights = DeepLabV3_MobileNet_V3_Large_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
        aux_loss = _ovewrite_value_param("aux_loss", aux_loss, True)
    elif num_classes is None:
        num_classes = 21

    backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True)
    model = _deeplabv3_mobilenetv3(backbone, num_classes, aux_loss)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))

    return model