import torch from torch.utils.tensorboard import SummaryWriter from models.base.base_model import BaseModel from models.base.base_trainer import BaseTrainer from models.config.config_tool import read_yaml from models.line_detect.dataset_LD import WirePointDataset from utils.log_util import show_line from tools import utils def _loss(losses): total_loss = 0 for i in losses.keys(): if i != "loss_wirepoint": total_loss += losses[i] else: loss_labels = losses[i]["losses"] loss_labels_k = list(loss_labels[0].keys()) for j, name in enumerate(loss_labels_k): loss = loss_labels[0][name].mean() total_loss += loss return total_loss device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def move_to_device(data, device): if isinstance(data, (list, tuple)): return type(data)(move_to_device(item, device) for item in data) elif isinstance(data, dict): return {key: move_to_device(value, device) for key, value in data.items()} elif isinstance(data, torch.Tensor): return data.to(device) else: return data # 对于非张量类型的数据不做任何改变 class Trainer(BaseTrainer): def __init__(self, model=None, dataset=None, device='cuda', **kwargs): super().__init__(model,dataset,device,**kwargs) def move_to_device(self, data, device): if isinstance(data, (list, tuple)): return type(data)(self.move_to_device(item, device) for item in data) elif isinstance(data, dict): return {key: self.move_to_device(value, device) for key, value in data.items()} elif isinstance(data, torch.Tensor): return data.to(device) else: return data # 对于非张量类型的数据不做任何改变 def writer_loss(self, writer, losses, epoch): try: for key, value in losses.items(): if key == 'loss_wirepoint': for subdict in losses['loss_wirepoint']['losses']: for subkey, subvalue in subdict.items(): writer.add_scalar(f'loss/{subkey}', subvalue.item() if hasattr(subvalue, 'item') else subvalue, epoch) elif isinstance(value, torch.Tensor): writer.add_scalar(f'loss/{key}', value.item(), epoch) except Exception as e: print(f"TensorBoard logging error: {e}") def train_cfg(self, model:BaseModel, cfg): # cfg = r'./config/wireframe.yaml' cfg = read_yaml(cfg) print(f'cfg:{cfg}') # print(cfg['n_dyn_negl']) self.train(model, **cfg) def train(self, model, **kwargs): dataset_train = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='train') train_sampler = torch.utils.data.RandomSampler(dataset_train) # test_sampler = torch.utils.data.SequentialSampler(dataset_test) train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=2, drop_last=True) train_collate_fn = utils.collate_fn_wirepoint data_loader_train = torch.utils.data.DataLoader( dataset_train, batch_sampler=train_batch_sampler, num_workers=8, collate_fn=train_collate_fn ) dataset_val = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='val') val_sampler = torch.utils.data.RandomSampler(dataset_val) # test_sampler = torch.utils.data.SequentialSampler(dataset_test) val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=2, drop_last=True) val_collate_fn = utils.collate_fn_wirepoint data_loader_val = torch.utils.data.DataLoader( dataset_val, batch_sampler=val_batch_sampler, num_workers=8, collate_fn=val_collate_fn ) # model = linenet_resnet50_fpn().to(self.device) optimizer = torch.optim.Adam(model.parameters(), lr=kwargs['optim']['lr']) writer = SummaryWriter(kwargs['io']['logdir']) for epoch in range(kwargs['optim']['max_epoch']): print(f"epoch:{epoch}") model.train() for imgs, targets in data_loader_train: imgs = move_to_device(imgs, device) targets=move_to_device(targets,device) print(f'imgs:{len(imgs)}') print(f'targets:{len(targets)}') losses = model(imgs, targets) # print(losses) loss = _loss(losses) optimizer.zero_grad() loss.backward() optimizer.step() self.writer_loss(writer, losses, epoch) model.eval() with torch.no_grad(): for batch_idx, (imgs, targets) in enumerate(data_loader_val): pred = model(self.move_to_device(imgs, self.device)) if batch_idx == 0: show_line(imgs[0], pred, epoch, writer) break