import os import time from datetime import datetime import torch from torch.utils.tensorboard import SummaryWriter from models.base.base_model import BaseModel from models.base.base_trainer import BaseTrainer from models.config.config_tool import read_yaml from models.line_detect.dataset_LD import WirePointDataset from models.line_detect.postprocess import box_line_, show_ from utils.log_util import show_line, save_last_model, save_best_model from tools import utils def _loss(losses): total_loss = 0 for i in losses.keys(): if i != "loss_wirepoint": total_loss += losses[i] else: loss_labels = losses[i]["losses"] loss_labels_k = list(loss_labels[0].keys()) for j, name in enumerate(loss_labels_k): loss = loss_labels[0][name].mean() total_loss += loss return total_loss device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def move_to_device(data, device): if isinstance(data, (list, tuple)): return type(data)(move_to_device(item, device) for item in data) elif isinstance(data, dict): return {key: move_to_device(value, device) for key, value in data.items()} elif isinstance(data, torch.Tensor): return data.to(device) else: return data # 对于非张量类型的数据不做任何改变 class Trainer(BaseTrainer): def __init__(self, model=None, dataset=None, device='cuda', **kwargs): super().__init__(model, dataset, device, **kwargs) def move_to_device(self, data, device): if isinstance(data, (list, tuple)): return type(data)(self.move_to_device(item, device) for item in data) elif isinstance(data, dict): return {key: self.move_to_device(value, device) for key, value in data.items()} elif isinstance(data, torch.Tensor): return data.to(device) else: return data # 对于非张量类型的数据不做任何改变 def load_best_model(self, model, optimizer, save_path, device): if os.path.exists(save_path): checkpoint = torch.load(save_path, map_location=device) model.load_state_dict(checkpoint['model_state_dict']) if optimizer is not None: optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint['epoch'] loss = checkpoint['loss'] print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}") else: print(f"No saved model found at {save_path}") return model, optimizer def writer_loss(self, writer, losses, epoch): try: for key, value in losses.items(): if key == 'loss_wirepoint': for subdict in losses['loss_wirepoint']['losses']: for subkey, subvalue in subdict.items(): writer.add_scalar(f'loss/{subkey}', subvalue.item() if hasattr(subvalue, 'item') else subvalue, epoch) elif isinstance(value, torch.Tensor): writer.add_scalar(f'loss/{key}', value.item(), epoch) except Exception as e: print(f"TensorBoard logging error: {e}") def train_cfg(self, model: BaseModel, cfg): # cfg = r'./config/wireframe.yaml' cfg = read_yaml(cfg) print(f'cfg:{cfg}') # print(cfg['n_dyn_negl']) self.train(model, **cfg) # def train(self, model, **kwargs): # dataset_train = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='train') # train_sampler = torch.utils.data.RandomSampler(dataset_train) # # test_sampler = torch.utils.data.SequentialSampler(dataset_test) # train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=64, drop_last=True) # train_collate_fn = utils.collate_fn_wirepoint # data_loader_train = torch.utils.data.DataLoader( # dataset_train, batch_sampler=train_batch_sampler, num_workers=8, collate_fn=train_collate_fn # ) # # dataset_val = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='val') # val_sampler = torch.utils.data.RandomSampler(dataset_val) # # test_sampler = torch.utils.data.SequentialSampler(dataset_test) # val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=64, drop_last=True) # val_collate_fn = utils.collate_fn_wirepoint # data_loader_val = torch.utils.data.DataLoader( # dataset_val, batch_sampler=val_batch_sampler, num_workers=8, collate_fn=val_collate_fn # ) # # train_result_ptath = os.path.join('train_results', datetime.now().strftime("%Y%m%d_%H%M%S")) # wts_path = os.path.join(train_result_ptath, 'weights') # tb_path = os.path.join(train_result_ptath, 'logs') # writer = SummaryWriter(tb_path) # # optimizer = torch.optim.Adam(model.parameters(), lr=kwargs['optim']['lr']) # # writer = SummaryWriter(kwargs['io']['logdir']) # model.to(device) # # # # # # 加载权重 # # save_path = 'logs/pth/best_model.pth' # # model, optimizer = self.load_best_model(model, optimizer, save_path, device) # # # logdir_with_pth = os.path.join(kwargs['io']['logdir'], 'pth') # # os.makedirs(logdir_with_pth, exist_ok=True) # 创建目录(如果不存在) # last_model_path = os.path.join(wts_path, 'last.pth') # best_model_path = os.path.join(wts_path, 'best.pth') # global_step = 0 # # for epoch in range(kwargs['optim']['max_epoch']): # print(f"epoch:{epoch}") # total_train_loss = 0.0 # # model.train() # # for imgs, targets in data_loader_train: # imgs = move_to_device(imgs, device) # targets=move_to_device(targets,device) # # print(f'imgs:{len(imgs)}') # # print(f'targets:{len(targets)}') # losses = model(imgs, targets) # loss = _loss(losses) # total_train_loss += loss.item() # optimizer.zero_grad() # loss.backward() # optimizer.step() # self.writer_loss(writer, losses, global_step) # global_step+=1 # # # avg_train_loss = total_train_loss / len(data_loader_train) # if epoch == 0: # best_loss = avg_train_loss; # # writer.add_scalar('loss/train', avg_train_loss, epoch) # # # if os.path.exists(f'{wts_path}/last.pt'): # os.remove(f'{wts_path}/last.pt') # # torch.save(model.state_dict(), f'{wts_path}/last.pt') # save_last_model(model,last_model_path,epoch,optimizer) # best_loss = save_best_model(model,best_model_path,epoch,avg_train_loss,best_loss,optimizer) # # model.eval() # with torch.no_grad(): # for batch_idx, (imgs, targets) in enumerate(data_loader_val): # t_start = time.time() # print(f'start to predict:{t_start}') # pred = model(self.move_to_device(imgs, self.device)) # t_end = time.time() # print(f'predict used:{t_end - t_start}') # if batch_idx == 0: # show_line(imgs[0], pred, epoch, writer) # break def train(self, model, **kwargs): default_params = { 'io': { 'logdir': 'logs /', 'datadir': '/ root / autodl - tmp / wirenet_rgb_gray', 'num_workers': 8, 'tensorboard_port': 6000, 'validation_interval': 300, 'batch_size': 4, 'batch_size_eval': 2, }, 'optim':{ 'name': 'Adam', 'lr': 4.0e-4, 'amsgrad': True, 'weight_decay': 1.0e-4, 'max_epoch': 90000000, 'lr_decay_epoch': 10, }, } # 更新默认参数 for key, value in kwargs.items(): if key in default_params: default_params[key] = value else: raise ValueError(f"Unknown argument: {key}") # 解析参数 dataset_path = default_params['io']['datadir'] num_workers = default_params['io']['num_workers'] batch_size_train = default_params['io']['batch_size'] batch_size_eval = default_params['io']['batch_size_eval'] epochs = default_params['optim']['max_epoch'] lr = default_params['optim']['lr'] dataset_train = WirePointDataset(dataset_path=dataset_path, dataset_type='train') train_sampler = torch.utils.data.RandomSampler(dataset_train) # test_sampler = torch.utils.data.SequentialSampler(dataset_test) train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=batch_size_train, drop_last=True) train_collate_fn = utils.collate_fn_wirepoint data_loader_train = torch.utils.data.DataLoader( dataset_train, batch_sampler=train_batch_sampler, num_workers=num_workers, collate_fn=train_collate_fn ) dataset_val = WirePointDataset(dataset_path=dataset_path, dataset_type='val') val_sampler = torch.utils.data.RandomSampler(dataset_val) # test_sampler = torch.utils.data.SequentialSampler(dataset_test) val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=batch_size_eval, drop_last=True) val_collate_fn = utils.collate_fn_wirepoint data_loader_val = torch.utils.data.DataLoader( dataset_val, batch_sampler=val_batch_sampler, num_workers=num_workers, collate_fn=val_collate_fn ) train_result_ptath = os.path.join('train_results', datetime.now().strftime("%Y%m%d_%H%M%S")) wts_path = os.path.join(train_result_ptath, 'weights') tb_path = os.path.join(train_result_ptath, 'logs') writer = SummaryWriter(tb_path) optimizer = torch.optim.Adam(model.parameters(), lr=lr) # writer = SummaryWriter(kwargs['io']['logdir']) model.to(device) # # 加载权重 # save_path = 'logs/pth/best_model.pth' # model, optimizer = self.load_best_model(model, optimizer, save_path, device) # logdir_with_pth = os.path.join(kwargs['io']['logdir'], 'pth') # os.makedirs(logdir_with_pth, exist_ok=True) # 创建目录(如果不存在) last_model_path = os.path.join(wts_path, 'last.pth') best_model_path = os.path.join(wts_path, 'best.pth') global_step = 0 for epoch in range(epochs): print(f"epoch:{epoch}") total_train_loss = 0.0 model.train() for imgs, targets in data_loader_train: imgs = move_to_device(imgs, device) targets = move_to_device(targets, device) # print(f'imgs:{len(imgs)}') # print(f'targets:{len(targets)}') losses = model(imgs, targets) loss = _loss(losses) total_train_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() self.writer_loss(writer, losses, global_step) global_step += 1 avg_train_loss = total_train_loss / len(data_loader_train) if epoch == 0: best_loss = avg_train_loss; writer.add_scalar('loss/train', avg_train_loss, epoch) if os.path.exists(f'{wts_path}/last.pt'): os.remove(f'{wts_path}/last.pt') # torch.save(model.state_dict(), f'{wts_path}/last.pt') save_last_model(model, last_model_path, epoch, optimizer) best_loss = save_best_model(model, best_model_path, epoch, avg_train_loss, best_loss, optimizer) model.eval() with torch.no_grad(): for batch_idx, (imgs, targets) in enumerate(data_loader_val): t_start = time.time() print(f'start to predict:{t_start}') pred = model(self.move_to_device(imgs, self.device)) t_end = time.time() print(f'predict used:{t_end - t_start}') if batch_idx == 0: show_line(imgs[0], pred, epoch, writer) break