import time import numpy as np import torch from matplotlib import pyplot as plt from torchvision.models.detection import keypointrcnn_resnet50_fpn, KeypointRCNN_ResNet50_FPN_Weights from torchvision.io import decode_image, read_image import torchvision.transforms.functional as F from torchvision.utils import draw_keypoints def show(imgs): if not isinstance(imgs, list): imgs = [imgs] fig, axs = plt.subplots(ncols=len(imgs), squeeze=False) for i, img in enumerate(imgs): img = img.detach() img = F.to_pil_image(img) axs[0, i].imshow(np.asarray(img)) axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[]) img_path=r"F:\DevTools\datasets\coco2017\val2017\000000000785.jpg" # img_path=r"F:\DevTools\datasets\renyaun\1012\images\2024-09-23-09-58-42_SaveImage.png" img_int = read_image(img_path) # person_int = decode_image(r"F:\DevTools\datasets\coco2017\val2017\000000000785.jpg") weights = KeypointRCNN_ResNet50_FPN_Weights.DEFAULT transforms = weights.transforms() print(f'transforms:{transforms}') img = transforms(img_int) person_float = transforms(img) model = keypointrcnn_resnet50_fpn(weights=None, progress=False) model = model.eval() t1=time.time() # img = torch.ones((3, 3, 512, 512)) outputs = model([img]) t2=time.time() print(f'time:{t2-t1}') # print(f'outputs:{outputs}') kpts = outputs[0]['keypoints'] scores = outputs[0]['scores'] print(f'kpts:{kpts}') print(f'scores:{scores}') detect_threshold = 0.75 idx = torch.where(scores > detect_threshold) keypoints = kpts[idx] # print(f'keypoints:{keypoints}') res = draw_keypoints(img_int, keypoints, colors="blue", radius=3) show(res) plt.show()