def map_heatmap_keypoints_to_original_image(heatmap, rois, downsample_ratio=4, joff=None):
    """
    将热力图中的关键点映射回原始图像的位置。

    参数:
    heatmap (torch.Tensor): 热力图,形状为 [H, W]
    rois (list of tuples): 每个ROI的坐标列表 [(x_min, y_min, x_max, y_max), ...]
    downsample_ratio (int): 下采样比例,默认为4
    joff (torch.Tensor, optional): 偏移图,形状为 [2, H, W]

    返回:
    list of tuples: 每个ROI对应的关键点在原始图像中的坐标 [(x, y), ...]
    """
    keypoints_in_original_image = []

    for i, (x_min, y_min, x_max, y_max) in enumerate(rois):
        roi_width = x_max - x_min
        roi_height = y_max - y_min

        # 获取热力图中的关键点位置
        heatmap_roi = heatmap[i] if len(heatmap.shape) == 4 else heatmap
        y_prime, x_prime = torch.where(heatmap_roi == torch.max(heatmap_roi))

        if len(y_prime) > 0 and len(x_prime) > 0:
            y_prime, x_prime = y_prime.item(), x_prime.item()

            # 如果有偏移图,则应用偏移修正
            if joff is not None:
                offset_x = joff[0, y_prime, x_prime].item()
                offset_y = joff[1, y_prime, x_prime].item()
                x_prime += offset_x
                y_prime += offset_y

            # 计算ROI内的相对坐标
            relative_x = x_prime / 128 * roi_width
            relative_y = y_prime / 128 * roi_height

            # 映射回原始图像坐标
            final_x = relative_x + x_min
            final_y = relative_y + y_min

            keypoints_in_original_image.append((final_x.item(), final_y.item()))
        else:
            keypoints_in_original_image.append(None)  # 如果没有找到关键点

    return keypoints_in_original_image