import os from typing import Optional, Any import cv2 import numpy as np import torch from tensorboardX import SummaryWriter from torch import nn import torch.nn.functional as F # from torchinfo import summary from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights from torchvision.models.detection import FasterRCNN, MaskRCNN_ResNet50_FPN_V2_Weights from torchvision.models.detection._utils import overwrite_eps from torchvision.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers from torchvision.models.detection.faster_rcnn import TwoMLPHead, FastRCNNPredictor from torchvision.models.detection.keypoint_rcnn import KeypointRCNNHeads, KeypointRCNNPredictor, \ KeypointRCNN_ResNet50_FPN_Weights from torchvision.ops import MultiScaleRoIAlign from torchvision.ops import misc as misc_nn_ops # from visdom import Visdom from models.config import config_tool from models.config.config_tool import read_yaml from models.ins.trainer import get_transform from models.wirenet.head import RoIHeads from models.wirenet.wirepoint_dataset import WirePointDataset from tools import utils from torch.utils.tensorboard import SummaryWriter import matplotlib.pyplot as plt import matplotlib as mpl from skimage import io import os.path as osp from torchvision.utils import draw_bounding_boxes from torchvision import transforms from models.wirenet.postprocess import postprocess FEATURE_DIM = 8 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") def non_maximum_suppression(a): ap = F.max_pool2d(a, 3, stride=1, padding=1) mask = (a == ap).float().clamp(min=0.0) return a * mask class Bottleneck1D(nn.Module): def __init__(self, inplanes, outplanes): super(Bottleneck1D, self).__init__() planes = outplanes // 2 self.op = nn.Sequential( nn.BatchNorm1d(inplanes), nn.ReLU(inplace=True), nn.Conv1d(inplanes, planes, kernel_size=1), nn.BatchNorm1d(planes), nn.ReLU(inplace=True), nn.Conv1d(planes, planes, kernel_size=3, padding=1), nn.BatchNorm1d(planes), nn.ReLU(inplace=True), nn.Conv1d(planes, outplanes, kernel_size=1), ) def forward(self, x): return x + self.op(x) class WirepointRCNN(FasterRCNN): def __init__( self, backbone, num_classes=None, # transform parameters min_size=None, max_size=1333, image_mean=None, image_std=None, # RPN parameters rpn_anchor_generator=None, rpn_head=None, rpn_pre_nms_top_n_train=2000, rpn_pre_nms_top_n_test=1000, rpn_post_nms_top_n_train=2000, rpn_post_nms_top_n_test=1000, rpn_nms_thresh=0.7, rpn_fg_iou_thresh=0.7, rpn_bg_iou_thresh=0.3, rpn_batch_size_per_image=256, rpn_positive_fraction=0.5, rpn_score_thresh=0.0, # Box parameters box_roi_pool=None, box_head=None, box_predictor=None, box_score_thresh=0.05, box_nms_thresh=0.5, box_detections_per_img=100, box_fg_iou_thresh=0.5, box_bg_iou_thresh=0.5, box_batch_size_per_image=512, box_positive_fraction=0.25, bbox_reg_weights=None, # keypoint parameters keypoint_roi_pool=None, keypoint_head=None, keypoint_predictor=None, num_keypoints=None, wirepoint_roi_pool=None, wirepoint_head=None, wirepoint_predictor=None, **kwargs, ): if not isinstance(keypoint_roi_pool, (MultiScaleRoIAlign, type(None))): raise TypeError( "keypoint_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(keypoint_roi_pool)}" ) if min_size is None: min_size = (640, 672, 704, 736, 768, 800) if num_keypoints is not None: if keypoint_predictor is not None: raise ValueError("num_keypoints should be None when keypoint_predictor is specified") else: num_keypoints = 17 out_channels = backbone.out_channels if wirepoint_roi_pool is None: wirepoint_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=128, sampling_ratio=2, ) if wirepoint_head is None: keypoint_layers = tuple(512 for _ in range(8)) # print(f'keypoinyrcnnHeads inchannels:{out_channels},layers{keypoint_layers}') wirepoint_head = WirepointHead(out_channels, keypoint_layers) if wirepoint_predictor is None: keypoint_dim_reduced = 512 # == keypoint_layers[-1] wirepoint_predictor = WirepointPredictor() super().__init__( backbone, num_classes, # transform parameters min_size, max_size, image_mean, image_std, # RPN-specific parameters rpn_anchor_generator, rpn_head, rpn_pre_nms_top_n_train, rpn_pre_nms_top_n_test, rpn_post_nms_top_n_train, rpn_post_nms_top_n_test, rpn_nms_thresh, rpn_fg_iou_thresh, rpn_bg_iou_thresh, rpn_batch_size_per_image, rpn_positive_fraction, rpn_score_thresh, # Box parameters box_roi_pool, box_head, box_predictor, box_score_thresh, box_nms_thresh, box_detections_per_img, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, **kwargs, ) if box_roi_pool is None: box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=14, sampling_ratio=2) if box_head is None: resolution = box_roi_pool.output_size[0] representation_size = 1024 box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size) if box_predictor is None: representation_size = 1024 box_predictor = FastRCNNPredictor(representation_size, num_classes) roi_heads = RoIHeads( # Box box_roi_pool, box_head, box_predictor, box_fg_iou_thresh, box_bg_iou_thresh, box_batch_size_per_image, box_positive_fraction, bbox_reg_weights, box_score_thresh, box_nms_thresh, box_detections_per_img, # wirepoint_roi_pool=wirepoint_roi_pool, # wirepoint_head=wirepoint_head, # wirepoint_predictor=wirepoint_predictor, ) self.roi_heads = roi_heads self.roi_heads.wirepoint_roi_pool = wirepoint_roi_pool self.roi_heads.wirepoint_head = wirepoint_head self.roi_heads.wirepoint_predictor = wirepoint_predictor class WirepointHead(nn.Module): def __init__(self, input_channels, num_class): super(WirepointHead, self).__init__() self.head_size = [[2], [1], [2]] m = int(input_channels / 4) heads = [] # print(f'M.head_size:{M.head_size}') # for output_channels in sum(M.head_size, []): for output_channels in sum(self.head_size, []): heads.append( nn.Sequential( nn.Conv2d(input_channels, m, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(m, output_channels, kernel_size=1), ) ) self.heads = nn.ModuleList(heads) def forward(self, x): # for idx, head in enumerate(self.heads): # print(f'{idx},multitask head:{head(x).shape},input x:{x.shape}') outputs = torch.cat([head(x) for head in self.heads], dim=1) features = x return outputs, features class WirepointPredictor(nn.Module): def __init__(self): super().__init__() # self.backbone = backbone # self.cfg = read_yaml(cfg) self.cfg = read_yaml('wirenet.yaml') self.n_pts0 = self.cfg['model']['n_pts0'] self.n_pts1 = self.cfg['model']['n_pts1'] self.n_stc_posl = self.cfg['model']['n_stc_posl'] self.dim_loi = self.cfg['model']['dim_loi'] self.use_conv = self.cfg['model']['use_conv'] self.dim_fc = self.cfg['model']['dim_fc'] self.n_out_line = self.cfg['model']['n_out_line'] self.n_out_junc = self.cfg['model']['n_out_junc'] self.loss_weight = self.cfg['model']['loss_weight'] self.n_dyn_junc = self.cfg['model']['n_dyn_junc'] self.eval_junc_thres = self.cfg['model']['eval_junc_thres'] self.n_dyn_posl = self.cfg['model']['n_dyn_posl'] self.n_dyn_negl = self.cfg['model']['n_dyn_negl'] self.n_dyn_othr = self.cfg['model']['n_dyn_othr'] self.use_cood = self.cfg['model']['use_cood'] self.use_slop = self.cfg['model']['use_slop'] self.n_stc_negl = self.cfg['model']['n_stc_negl'] self.head_size = self.cfg['model']['head_size'] self.num_class = sum(sum(self.head_size, [])) self.head_off = np.cumsum([sum(h) for h in self.head_size]) lambda_ = torch.linspace(0, 1, self.n_pts0)[:, None] self.register_buffer("lambda_", lambda_) self.do_static_sampling = self.n_stc_posl + self.n_stc_negl > 0 self.fc1 = nn.Conv2d(256, self.dim_loi, 1) scale_factor = self.n_pts0 // self.n_pts1 if self.use_conv: self.pooling = nn.Sequential( nn.MaxPool1d(scale_factor, scale_factor), Bottleneck1D(self.dim_loi, self.dim_loi), ) self.fc2 = nn.Sequential( nn.ReLU(inplace=True), nn.Linear(self.dim_loi * self.n_pts1 + FEATURE_DIM, 1) ) else: self.pooling = nn.MaxPool1d(scale_factor, scale_factor) self.fc2 = nn.Sequential( nn.Linear(self.dim_loi * self.n_pts1 + FEATURE_DIM, self.dim_fc), nn.ReLU(inplace=True), nn.Linear(self.dim_fc, self.dim_fc), nn.ReLU(inplace=True), nn.Linear(self.dim_fc, 1), ) self.loss = nn.BCEWithLogitsLoss(reduction="none") def forward(self, inputs, features, targets=None): # outputs, features = input # for out in outputs: # print(f'out:{out.shape}') # outputs=merge_features(outputs,100) batch, channel, row, col = inputs.shape # print(f'outputs:{inputs.shape}') # print(f'batch:{batch}, channel:{channel}, row:{row}, col:{col}') if targets is not None: self.training = True # print(f'target:{targets}') wires_targets = [t["wires"] for t in targets] # print(f'wires_target:{wires_targets}') # 提取所有 'junc_map', 'junc_offset', 'line_map' 的张量 junc_maps = [d["junc_map"] for d in wires_targets] junc_offsets = [d["junc_offset"] for d in wires_targets] line_maps = [d["line_map"] for d in wires_targets] junc_map_tensor = torch.stack(junc_maps, dim=0) junc_offset_tensor = torch.stack(junc_offsets, dim=0) line_map_tensor = torch.stack(line_maps, dim=0) wires_meta = { "junc_map": junc_map_tensor, "junc_offset": junc_offset_tensor, # "line_map": line_map_tensor, } else: self.training = False t = { "junc_coords": torch.zeros(1, 2).to(device), "jtyp": torch.zeros(1, dtype=torch.uint8).to(device), "line_pos_idx": torch.zeros(2, 2, dtype=torch.uint8).to(device), "line_neg_idx": torch.zeros(2, 2, dtype=torch.uint8).to(device), "junc_map": torch.zeros([1, 1, 128, 128]).to(device), "junc_offset": torch.zeros([1, 1, 2, 128, 128]).to(device), } wires_targets = [t for b in range(inputs.size(0))] wires_meta = { "junc_map": torch.zeros([1, 1, 128, 128]).to(device), "junc_offset": torch.zeros([1, 1, 2, 128, 128]).to(device), } T = wires_meta.copy() n_jtyp = T["junc_map"].shape[1] offset = self.head_off result = {} for stack, output in enumerate([inputs]): output = output.transpose(0, 1).reshape([-1, batch, row, col]).contiguous() # print(f"Stack {stack} output shape: {output.shape}") # 打印每层的输出形状 jmap = output[0: offset[0]].reshape(n_jtyp, 2, batch, row, col) lmap = output[offset[0]: offset[1]].squeeze(0) joff = output[offset[1]: offset[2]].reshape(n_jtyp, 2, batch, row, col) if stack == 0: result["preds"] = { "jmap": jmap.permute(2, 0, 1, 3, 4).softmax(2)[:, :, 1], "lmap": lmap.sigmoid(), "joff": joff.permute(2, 0, 1, 3, 4).sigmoid() - 0.5, } h = result["preds"] # print(f'features shape:{features.shape}') x = self.fc1(features) n_batch, n_channel, row, col = x.shape xs, ys, fs, ps, idx, jcs = [], [], [], [], [0], [] for i, meta in enumerate(wires_targets): p, label, feat, jc = self.sample_lines( meta, h["jmap"][i], h["joff"][i], ) # print(f"p.shape:{p.shape},label:{label.shape},feat:{feat.shape},jc:{len(jc)}") ys.append(label) if self.training and self.do_static_sampling: p = torch.cat([p, meta["lpre"]]) feat = torch.cat([feat, meta["lpre_feat"]]) ys.append(meta["lpre_label"]) del jc else: jcs.append(jc) ps.append(p) fs.append(feat) p = p[:, 0:1, :] * self.lambda_ + p[:, 1:2, :] * (1 - self.lambda_) - 0.5 p = p.reshape(-1, 2) # [N_LINE x N_POINT, 2_XY] px, py = p[:, 0].contiguous(), p[:, 1].contiguous() px0 = px.floor().clamp(min=0, max=127) py0 = py.floor().clamp(min=0, max=127) px1 = (px0 + 1).clamp(min=0, max=127) py1 = (py0 + 1).clamp(min=0, max=127) px0l, py0l, px1l, py1l = px0.long(), py0.long(), px1.long(), py1.long() # xp: [N_LINE, N_CHANNEL, N_POINT] xp = ( ( x[i, :, px0l, py0l] * (px1 - px) * (py1 - py) + x[i, :, px1l, py0l] * (px - px0) * (py1 - py) + x[i, :, px0l, py1l] * (px1 - px) * (py - py0) + x[i, :, px1l, py1l] * (px - px0) * (py - py0) ) .reshape(n_channel, -1, self.n_pts0) .permute(1, 0, 2) ) xp = self.pooling(xp) # print(f'xp.shape:{xp.shape}') xs.append(xp) idx.append(idx[-1] + xp.shape[0]) # print(f'idx__:{idx}') x, y = torch.cat(xs), torch.cat(ys) f = torch.cat(fs) x = x.reshape(-1, self.n_pts1 * self.dim_loi) x = torch.cat([x, f], 1) x = x.to(dtype=torch.float32) x = self.fc2(x).flatten() # return x,idx,jcs,n_batch,ps,self.n_out_line,self.n_out_junc return x, y, idx, jcs, n_batch, ps, self.n_out_line, self.n_out_junc # if mode != "training": # self.inference(x, idx, jcs, n_batch, ps) # return result def sample_lines(self, meta, jmap, joff): with torch.no_grad(): junc = meta["junc_coords"] # [N, 2] jtyp = meta["jtyp"] # [N] Lpos = meta["line_pos_idx"] Lneg = meta["line_neg_idx"] n_type = jmap.shape[0] print(f'jmap:{jmap.shape}') jmap = non_maximum_suppression(jmap).reshape(n_type, -1) joff = joff.reshape(n_type, 2, -1) max_K = self.n_dyn_junc // n_type N = len(junc) # if mode != "training": if not self.training: K = min(int((jmap > self.eval_junc_thres).float().sum().item()), max_K) else: K = min(int(N * 2 + 2), max_K) if K < 2: K = 2 device = jmap.device # index: [N_TYPE, K] score, index = torch.topk(jmap, k=K) y = (index // 128).float() + torch.gather(joff[:, 0], 1, index) + 0.5 x = (index % 128).float() + torch.gather(joff[:, 1], 1, index) + 0.5 # xy: [N_TYPE, K, 2] xy = torch.cat([y[..., None], x[..., None]], dim=-1) xy_ = xy[..., None, :] del x, y, index # print(f"xy_.is_cuda: {xy_.is_cuda}") # print(f"junc.is_cuda: {junc.is_cuda}") # dist: [N_TYPE, K, N] dist = torch.sum((xy_ - junc) ** 2, -1) cost, match = torch.min(dist, -1) # xy: [N_TYPE * K, 2] # match: [N_TYPE, K] for t in range(n_type): match[t, jtyp[match[t]] != t] = N match[cost > 1.5 * 1.5] = N match = match.flatten() _ = torch.arange(n_type * K, device=device) u, v = torch.meshgrid(_, _) u, v = u.flatten(), v.flatten() up, vp = match[u], match[v] label = Lpos[up, vp] # if mode == "training": if self.training: c = torch.zeros_like(label, dtype=torch.bool) # sample positive lines cdx = label.nonzero().flatten() if len(cdx) > self.n_dyn_posl: # print("too many positive lines") perm = torch.randperm(len(cdx), device=device)[: self.n_dyn_posl] cdx = cdx[perm] c[cdx] = 1 # sample negative lines cdx = Lneg[up, vp].nonzero().flatten() if len(cdx) > self.n_dyn_negl: # print("too many negative lines") perm = torch.randperm(len(cdx), device=device)[: self.n_dyn_negl] cdx = cdx[perm] c[cdx] = 1 # sample other (unmatched) lines cdx = torch.randint(len(c), (self.n_dyn_othr,), device=device) c[cdx] = 1 else: c = (u < v).flatten() # sample lines u, v, label = u[c], v[c], label[c] xy = xy.reshape(n_type * K, 2) xyu, xyv = xy[u], xy[v] u2v = xyu - xyv u2v /= torch.sqrt((u2v ** 2).sum(-1, keepdim=True)).clamp(min=1e-6) feat = torch.cat( [ xyu / 128 * self.use_cood, xyv / 128 * self.use_cood, u2v * self.use_slop, (u[:, None] > K).float(), (v[:, None] > K).float(), ], 1, ) line = torch.cat([xyu[:, None], xyv[:, None]], 1) xy = xy.reshape(n_type, K, 2) jcs = [xy[i, score[i] > 0.03] for i in range(n_type)] return line, label.float(), feat, jcs def wirepointrcnn_resnet50_fpn( *, weights: Optional[KeypointRCNN_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, num_keypoints: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> WirepointRCNN: weights = KeypointRCNN_ResNet50_FPN_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) model = WirepointRCNN(backbone, num_classes=5, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) if weights == KeypointRCNN_ResNet50_FPN_Weights.COCO_V1: overwrite_eps(model, 0.0) return model def _loss(losses): total_loss = 0 for i in losses.keys(): if i != "loss_wirepoint": total_loss += losses[i] else: loss_labels = losses[i]["losses"] loss_labels_k = list(loss_labels[0].keys()) for j, name in enumerate(loss_labels_k): loss = loss_labels[0][name].mean() total_loss += loss return total_loss cmap = plt.get_cmap("jet") norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0) sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array([]) def c(x): return sm.to_rgba(x) def imshow(im): plt.close() plt.tight_layout() plt.imshow(im) plt.colorbar(sm, fraction=0.046) plt.xlim([0, im.shape[0]]) plt.ylim([im.shape[0], 0]) # plt.show() # def _plot_samples(img, i, result, prefix, epoch): # print(f"prefix:{prefix}") # def draw_vecl(lines, sline, juncs, junts, fn): # directory = os.path.dirname(fn) # if not os.path.exists(directory): # os.makedirs(directory) # imshow(img.permute(1, 2, 0)) # if len(lines) > 0 and not (lines[0] == 0).all(): # for i, ((a, b), s) in enumerate(zip(lines, sline)): # if i > 0 and (lines[i] == lines[0]).all(): # break # plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=4) # if not (juncs[0] == 0).all(): # for i, j in enumerate(juncs): # if i > 0 and (i == juncs[0]).all(): # break # plt.scatter(j[1], j[0], c="red", s=64, zorder=100) # if junts is not None and len(junts) > 0 and not (junts[0] == 0).all(): # for i, j in enumerate(junts): # if i > 0 and (i == junts[0]).all(): # break # plt.scatter(j[1], j[0], c="blue", s=64, zorder=100) # plt.savefig(fn), plt.close() # # rjuncs = result["juncs"][i].cpu().numpy() * 4 # rjunts = None # if "junts" in result: # rjunts = result["junts"][i].cpu().numpy() * 4 # # vecl_result = result["lines"][i].cpu().numpy() * 4 # score = result["score"][i].cpu().numpy() # # draw_vecl(vecl_result, score, rjuncs, rjunts, f"{prefix}_vecl_b.jpg") # # img1 = cv2.imread(f"{prefix}_vecl_b.jpg") # writer.add_image(f'output_epoch_{epoch}', img1, global_step=epoch) def _plot_samples(img, i, result, prefix, epoch, writer): # print(f"prefix:{prefix}") def draw_vecl(lines, sline, juncs, junts, fn): # 确保目录存在 directory = os.path.dirname(fn) if not os.path.exists(directory): os.makedirs(directory) # 绘制图像 plt.figure() plt.imshow(img.permute(1, 2, 0).cpu().numpy()) plt.axis('off') # 可选:关闭坐标轴 if len(lines) > 0 and not (lines[0] == 0).all(): for idx, ((a, b), s) in enumerate(zip(lines, sline)): if idx > 0 and (lines[idx] == lines[0]).all(): break plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=1) if not (juncs[0] == 0).all(): for idx, j in enumerate(juncs): if idx > 0 and (j == juncs[0]).all(): break plt.scatter(j[1], j[0], c="red", s=20, zorder=100) if junts is not None and len(junts) > 0 and not (junts[0] == 0).all(): for idx, j in enumerate(junts): if idx > 0 and (j == junts[0]).all(): break plt.scatter(j[1], j[0], c="blue", s=20, zorder=100) # plt.show() # 将matplotlib图像转换为numpy数组 plt.tight_layout() fig = plt.gcf() fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape( fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return image_from_plot # 获取结果数据并转换为numpy数组 rjuncs = result["juncs"][i].cpu().numpy() * 4 rjunts = None if "junts" in result: rjunts = result["junts"][i].cpu().numpy() * 4 vecl_result = result["lines"][i].cpu().numpy() * 4 score = result["score"][i].cpu().numpy() # 调用绘图函数并获取图像 image_path = f"{prefix}_vecl_b.jpg" image_array = draw_vecl(vecl_result, score, rjuncs, rjunts, image_path) # 将numpy数组转换为torch tensor,并写入TensorBoard image_tensor = transforms.ToTensor()(image_array) writer.add_image(f'output_epoch', image_tensor, global_step=epoch) writer.add_image(f'ori_epoch', img, global_step=epoch) def show_line(img, pred, prefix, epoch, write): fn = f"{prefix}_line.jpg" directory = os.path.dirname(fn) if not os.path.exists(directory): os.makedirs(directory) print(fn) PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5} H = pred im = img.permute(1, 2, 0) lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2] scores = H["score"][0].cpu().numpy() for i in range(1, len(lines)): if (lines[i] == lines[0]).all(): lines = lines[:i] scores = scores[:i] break # postprocess lines to remove overlapped lines diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5 nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False) for i, t in enumerate([0.5]): plt.gca().set_axis_off() plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) for (a, b), s in zip(nlines, nscores): if s < t: continue plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s) plt.scatter(a[1], a[0], **PLTOPTS) plt.scatter(b[1], b[0], **PLTOPTS) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.imshow(im) plt.savefig(fn, bbox_inches="tight") plt.show() plt.close() img2 = cv2.imread(fn) # 预测图 # img1 = im.resize(img2.shape) # 原图 # writer.add_images(f"{epoch}", torch.tensor([img1, img2]), dataformats='NHWC') writer.add_image("output", img2, epoch) if __name__ == '__main__': cfg = 'wirenet.yaml' cfg = read_yaml(cfg) print(f'cfg:{cfg}') print(cfg['model']['n_dyn_negl']) # net = WirepointPredictor() # if torch.cuda.is_available(): # device_name = "cuda" # torch.backends.cudnn.deterministic = True # torch.cuda.manual_seed(0) # print("Let's use", torch.cuda.device_count(), "GPU(s)!") # else: # print("CUDA is not available") # # device = torch.device(device_name) dataset_train = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='train') train_sampler = torch.utils.data.RandomSampler(dataset_train) # test_sampler = torch.utils.data.SequentialSampler(dataset_test) train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=1, drop_last=True) train_collate_fn = utils.collate_fn_wirepoint data_loader_train = torch.utils.data.DataLoader( dataset_train, batch_sampler=train_batch_sampler, num_workers=0, collate_fn=train_collate_fn ) dataset_val = WirePointDataset(dataset_path=cfg['io']['datadir'], dataset_type='val') val_sampler = torch.utils.data.RandomSampler(dataset_val) # test_sampler = torch.utils.data.SequentialSampler(dataset_test) val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=1, drop_last=True) val_collate_fn = utils.collate_fn_wirepoint data_loader_val = torch.utils.data.DataLoader( dataset_val, batch_sampler=val_batch_sampler, num_workers=0, collate_fn=val_collate_fn ) model = wirepointrcnn_resnet50_fpn().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=cfg['optim']['lr']) writer = SummaryWriter(cfg['io']['logdir']) def move_to_device(data, device): if isinstance(data, (list, tuple)): return type(data)(move_to_device(item, device) for item in data) elif isinstance(data, dict): return {key: move_to_device(value, device) for key, value in data.items()} elif isinstance(data, torch.Tensor): return data.to(device) else: return data # 对于非张量类型的数据不做任何改变 def writer_loss(writer, losses, epoch): # ?????? try: for key, value in losses.items(): if key == 'loss_wirepoint': # ?? wirepoint ?????? for subdict in losses['loss_wirepoint']['losses']: for subkey, subvalue in subdict.items(): # ?? .item() ????? writer.add_scalar(f'loss_wirepoint/{subkey}', subvalue.item() if hasattr(subvalue, 'item') else subvalue, epoch) elif isinstance(value, torch.Tensor): # ???????? writer.add_scalar(key, value.item(), epoch) except Exception as e: print(f"TensorBoard logging error: {e}") for epoch in range(cfg['optim']['max_epoch']): print(f"epoch:{epoch}") model.train() for imgs, targets in data_loader_train: print(f'targets:{targets[0]["wires"]["line_map"].shape}') losses = model(move_to_device(imgs, device), move_to_device(targets, device)) loss = _loss(losses) print(loss) # optimizer.zero_grad() # loss.backward() # optimizer.step() # writer_loss(writer, losses, epoch) # model.eval() # with torch.no_grad(): # for batch_idx, (imgs, targets) in enumerate(data_loader_val): # pred = model(move_to_device(imgs, device)) # # print(f"pred:{pred}") # # if batch_idx == 0: # result = pred[1]['wires'] # pred[0].keys() ['boxes', 'labels', 'scores'] # print(imgs[0].shape) # [3,512,512] # # imshow(imgs[0].permute(1, 2, 0)) # 改为(512, 512, 3) # _plot_samples(imgs[0], 0, result, f"{cfg['io']['logdir']}/{epoch}/", epoch, writer) # show_line(imgs[0], result, f"{cfg['io']['logdir']}/{epoch}", epoch, writer) # imgs, targets = next(iter(data_loader)) # # model.train() # pred = model(imgs, targets) # print(f'pred:{pred}') # result, losses = model(imgs, targets) # print(f'result:{result}') # print(f'pred:{losses}')