浏览代码

添加Resnet18

RenLiqiang 5 月之前
父节点
当前提交
f792fbdf13
共有 2 个文件被更改,包括 130 次插入5 次删除
  1. 129 4
      models/keypoint/kepointrcnn.py
  2. 1 1
      models/wirenet2/kepointrcnn.py

+ 129 - 4
models/keypoint/kepointrcnn.py

@@ -10,15 +10,22 @@ import torchvision
 from torch import nn
 from torch.nn.modules.module import T
 from torchvision.io import read_image
+from torchvision.models import resnet50, ResNet50_Weights, resnet18, ResNet18_Weights
+from torchvision.models._utils import _ovewrite_value_param
 from torchvision.models.detection import MaskRCNN_ResNet50_FPN_V2_Weights
+from torchvision.models.detection.anchor_utils import AnchorGenerator
+from torchvision.models.detection.backbone_utils import _validate_trainable_layers, _resnet_fpn_extractor
 from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
-from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
+from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor, KeypointRCNN, \
+    KeypointRCNN_ResNet50_FPN_Weights
 from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
 from torchvision.utils import draw_bounding_boxes
-
+from torchvision.ops import misc as misc_nn_ops
+from typing import Optional, Any
 from models.config.config_tool import read_yaml
 from models.keypoint.trainer import train_cfg
-
+from models.wirenet._utils import overwrite_eps
+from  torchvision.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES
 from tools import utils
 os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
 
@@ -26,8 +33,19 @@ class KeypointRCNNModel(nn.Module):
 
     def __init__(self, num_classes=2,num_keypoints=2, transforms=None):
         super(KeypointRCNNModel, self).__init__()
+
+        ####mobile net
+       # backbone = torchvision.models.mobilenet_v2(weights=None).features
+       # backbone.out_channels = 1280
+       # anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),aspect_ratios = ((0.5, 1.0, 2.0),))
+       # roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],output_size = 7,sampling_ratio = 2)
+       #keypoint_roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],output_size = 14,sampling_ratio = 2)
+       # self.__model= KeypointRCNN(backbone, num_classes=2, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,keypoint_roi_pool=keypoint_roi_pooler)
+        ####
+
         default_weights = torchvision.models.detection.KeypointRCNN_ResNet50_FPN_Weights.DEFAULT
-        self.__model = torchvision.models.detection.keypointrcnn_resnet50_fpn(weights=None,num_classes=num_classes,
+
+        self.__model = keypointrcnn_resnet18_fpn(weights=None,num_classes=num_classes,
                                                                               num_keypoints=num_keypoints,
                                                                               progress=False)
 
@@ -77,6 +95,113 @@ class KeypointRCNNModel(nn.Module):
         # return super().eval()
 
 
+def keypointrcnn_resnet18_fpn(
+        *,
+        weights: Optional[KeypointRCNN_ResNet50_FPN_Weights] = None,
+        progress: bool = True,
+        num_classes: Optional[int] = None,
+        num_keypoints: Optional[int] = None,
+        weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
+        trainable_backbone_layers: Optional[int] = None,
+        **kwargs: Any,
+) -> KeypointRCNN:
+    """
+    Constructs a Keypoint R-CNN model with a ResNet-50-FPN backbone.
+
+    .. betastatus:: detection module
+
+    Reference: `Mask R-CNN <https://arxiv.org/abs/1703.06870>`__.
+
+    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
+    image, and should be in ``0-1`` range. Different images can have different sizes.
+
+    The behavior of the model changes depending on if it is in training or evaluation mode.
+
+    During training, the model expects both the input tensors and targets (list of dictionary),
+    containing:
+
+        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
+          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
+        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
+        - keypoints (``FloatTensor[N, K, 3]``): the ``K`` keypoints location for each of the ``N`` instances, in the
+          format ``[x, y, visibility]``, where ``visibility=0`` means that the keypoint is not visible.
+
+    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
+    losses for both the RPN and the R-CNN, and the keypoint loss.
+
+    During inference, the model requires only the input tensors, and returns the post-processed
+    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
+    follows, where ``N`` is the number of detected instances:
+
+        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
+          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
+        - labels (``Int64Tensor[N]``): the predicted labels for each instance
+        - scores (``Tensor[N]``): the scores or each instance
+        - keypoints (``FloatTensor[N, K, 3]``): the locations of the predicted keypoints, in ``[x, y, v]`` format.
+
+    For more details on the output, you may refer to :ref:`instance_seg_output`.
+
+    Keypoint R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.
+
+    Example::
+
+        >>> model = torchvision.models.detection.keypointrcnn_resnet50_fpn(weights=KeypointRCNN_ResNet50_FPN_Weights.DEFAULT)
+        >>> model.eval()
+        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
+        >>> predictions = model(x)
+        >>>
+        >>> # optionally, if you want to export the model to ONNX:
+        >>> torch.onnx.export(model, x, "keypoint_rcnn.onnx", opset_version = 11)
+
+    Args:
+        weights (:class:`~torchvision.models.detection.KeypointRCNN_ResNet50_FPN_Weights`, optional): The
+            pretrained weights to use. See
+            :class:`~torchvision.models.detection.KeypointRCNN_ResNet50_FPN_Weights`
+            below for more details, and possible values. By default, no
+            pre-trained weights are used.
+        progress (bool): If True, displays a progress bar of the download to stderr
+        num_classes (int, optional): number of output classes of the model (including the background)
+        num_keypoints (int, optional): number of keypoints
+        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
+            pretrained weights for the backbone.
+        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
+            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
+            passed (the default) this value is set to 3.
+
+    .. autoclass:: torchvision.models.detection.KeypointRCNN_ResNet50_FPN_Weights
+        :members:
+    """
+    weights = KeypointRCNN_ResNet50_FPN_Weights.verify(weights)
+    weights_backbone = ResNet50_Weights.verify(weights_backbone)
+    # if weights_backbone is None:
+
+    weights_backbone = ResNet18_Weights.IMAGENET1K_V1
+
+    if weights is not None:
+        # weights_backbone = None
+        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
+        num_keypoints = _ovewrite_value_param("num_keypoints", num_keypoints, len(weights.meta["keypoint_names"]))
+    else:
+        if num_classes is None:
+            num_classes = 2
+        if num_keypoints is None:
+            num_keypoints = 17
+
+    is_trained = weights is not None or weights_backbone is not None
+    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
+    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
+
+    backbone = resnet18(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
+
+    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
+    model = KeypointRCNN(backbone, num_classes, num_keypoints=num_keypoints, **kwargs)
+
+    if weights is not None:
+        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
+        if weights == KeypointRCNN_ResNet50_FPN_Weights.COCO_V1:
+            overwrite_eps(model, 0.0)
+
+    return model
 if __name__ == '__main__':
     # ins_model = MaskRCNNModel(num_classes=5)
     keypoint_model = KeypointRCNNModel(num_keypoints=2)

+ 1 - 1
models/wirenet2/kepointrcnn.py

@@ -14,7 +14,7 @@ from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
 from torchvision.models.detection.keypoint_rcnn import KeypointRCNNPredictor
 from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
 from torchvision.utils import draw_bounding_boxes
-
+from  torchvision.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES
 from models.config.config_tool import read_yaml
 from models.keypoint.trainer import train_cfg