|
@@ -0,0 +1,202 @@
|
|
|
|
+from torch.utils.data.dataset import T_co
|
|
|
|
+
|
|
|
|
+from models.base.base_dataset import BaseDataset
|
|
|
|
+
|
|
|
|
+import glob
|
|
|
|
+import json
|
|
|
|
+import math
|
|
|
|
+import os
|
|
|
|
+import random
|
|
|
|
+import cv2
|
|
|
|
+import PIL
|
|
|
|
+
|
|
|
|
+import matplotlib.pyplot as plt
|
|
|
|
+import matplotlib as mpl
|
|
|
|
+from torchvision.utils import draw_bounding_boxes
|
|
|
|
+
|
|
|
|
+import numpy as np
|
|
|
|
+import numpy.linalg as LA
|
|
|
|
+import torch
|
|
|
|
+from skimage import io
|
|
|
|
+from torch.utils.data import Dataset
|
|
|
|
+from torch.utils.data.dataloader import default_collate
|
|
|
|
+
|
|
|
|
+import matplotlib.pyplot as plt
|
|
|
|
+from models.dataset_tool import line_boxes, read_masks_from_txt_wire, read_masks_from_pixels_wire, adjacency_matrix
|
|
|
|
+
|
|
|
|
+def validate_keypoints(keypoints, image_width, image_height):
|
|
|
|
+ for kp in keypoints:
|
|
|
|
+ x, y, v = kp
|
|
|
|
+ if not (0 <= x < image_width and 0 <= y < image_height):
|
|
|
|
+ raise ValueError(f"Key point ({x}, {y}) is out of bounds for image size ({image_width}, {image_height})")
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class KeypointDataset(BaseDataset):
|
|
|
|
+ def __init__(self, dataset_path, transforms=None, dataset_type=None, target_type='pixel'):
|
|
|
|
+ super().__init__(dataset_path)
|
|
|
|
+
|
|
|
|
+ self.data_path = dataset_path
|
|
|
|
+ print(f'data_path:{dataset_path}')
|
|
|
|
+ self.transforms = transforms
|
|
|
|
+ self.img_path = os.path.join(dataset_path, "images\\" + dataset_type)
|
|
|
|
+ self.lbl_path = os.path.join(dataset_path, "labels\\" + dataset_type)
|
|
|
|
+ self.imgs = os.listdir(self.img_path)
|
|
|
|
+ self.lbls = os.listdir(self.lbl_path)
|
|
|
|
+ self.target_type = target_type
|
|
|
|
+ # self.default_transform = DefaultTransform()
|
|
|
|
+
|
|
|
|
+ def __getitem__(self, index) -> T_co:
|
|
|
|
+ img_path = os.path.join(self.img_path, self.imgs[index])
|
|
|
|
+ lbl_path = os.path.join(self.lbl_path, self.imgs[index][:-3] + 'json')
|
|
|
|
+
|
|
|
|
+ img = PIL.Image.open(img_path).convert('RGB')
|
|
|
|
+ w, h = img.size
|
|
|
|
+
|
|
|
|
+ # wire_labels, target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w))
|
|
|
|
+ target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w))
|
|
|
|
+ if self.transforms:
|
|
|
|
+ img, target = self.transforms(img, target)
|
|
|
|
+ else:
|
|
|
|
+ img = self.default_transform(img)
|
|
|
|
+
|
|
|
|
+ # print(f'img:{img}')
|
|
|
|
+ return img, target
|
|
|
|
+
|
|
|
|
+ def __len__(self):
|
|
|
|
+ return len(self.imgs)
|
|
|
|
+
|
|
|
|
+ def read_target(self, item, lbl_path, shape, extra=None):
|
|
|
|
+ print(f'shape:{shape}')
|
|
|
|
+ # print(f'lbl_path:{lbl_path}')
|
|
|
|
+ with open(lbl_path, 'r') as file:
|
|
|
|
+ lable_all = json.load(file)
|
|
|
|
+
|
|
|
|
+ n_stc_posl = 300
|
|
|
|
+ n_stc_negl = 40
|
|
|
|
+ use_cood = 0
|
|
|
|
+ use_slop = 0
|
|
|
|
+
|
|
|
|
+ wire = lable_all["wires"][0] # 字典
|
|
|
|
+ line_pos_coords = np.random.permutation(wire["line_pos_coords"]["content"])[: n_stc_posl] # 不足,有多少取多少
|
|
|
|
+ line_neg_coords = np.random.permutation(wire["line_neg_coords"]["content"])[: n_stc_negl]
|
|
|
|
+ npos, nneg = len(line_pos_coords), len(line_neg_coords)
|
|
|
|
+ lpre = np.concatenate([line_pos_coords, line_neg_coords], 0) # 正负样本坐标合在一起
|
|
|
|
+ for i in range(len(lpre)):
|
|
|
|
+ if random.random() > 0.5:
|
|
|
|
+ lpre[i] = lpre[i, ::-1]
|
|
|
|
+ ldir = lpre[:, 0, :2] - lpre[:, 1, :2]
|
|
|
|
+ ldir /= np.clip(LA.norm(ldir, axis=1, keepdims=True), 1e-6, None)
|
|
|
|
+ feat = [
|
|
|
|
+ lpre[:, :, :2].reshape(-1, 4) / 128 * use_cood,
|
|
|
|
+ ldir * use_slop,
|
|
|
|
+ lpre[:, :, 2],
|
|
|
|
+ ]
|
|
|
|
+ feat = np.concatenate(feat, 1)
|
|
|
|
+
|
|
|
|
+ wire_labels = {
|
|
|
|
+ "junc_coords": torch.tensor(wire["junc_coords"]["content"]),
|
|
|
|
+ "jtyp": torch.tensor(wire["junc_coords"]["content"])[:, 2].byte(),
|
|
|
|
+ "line_pos_idx": adjacency_matrix(len(wire["junc_coords"]["content"]), wire["line_pos_idx"]["content"]),
|
|
|
|
+ # 真实存在线条的邻接矩阵
|
|
|
|
+ "line_neg_idx": adjacency_matrix(len(wire["junc_coords"]["content"]), wire["line_neg_idx"]["content"]),
|
|
|
|
+
|
|
|
|
+ "lpre": torch.tensor(lpre)[:, :, :2],
|
|
|
|
+ "lpre_label": torch.cat([torch.ones(npos), torch.zeros(nneg)]), # 样本对应标签 1,0
|
|
|
|
+ "lpre_feat": torch.from_numpy(feat),
|
|
|
|
+ "junc_map": torch.tensor(wire['junc_map']["content"]),
|
|
|
|
+ "junc_offset": torch.tensor(wire['junc_offset']["content"]),
|
|
|
|
+ "line_map": torch.tensor(wire['line_map']["content"]),
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ labels = []
|
|
|
|
+ if self.target_type == 'polygon':
|
|
|
|
+ labels, masks = read_masks_from_txt_wire(lbl_path, shape)
|
|
|
|
+ elif self.target_type == 'pixel':
|
|
|
|
+ labels = read_masks_from_pixels_wire(lbl_path, shape)
|
|
|
|
+
|
|
|
|
+ # print(torch.stack(masks).shape) # [线段数, 512, 512]
|
|
|
|
+ target = {}
|
|
|
|
+
|
|
|
|
+ target["image_id"] = torch.tensor(item)
|
|
|
|
+ # return wire_labels, target
|
|
|
|
+ target["wires"] = wire_labels
|
|
|
|
+
|
|
|
|
+ target["labels"] = torch.stack(labels)
|
|
|
|
+ # print(f'labels:{target["labels"]}')
|
|
|
|
+ target["boxes"] = line_boxes(target)
|
|
|
|
+ # visibility_flags = torch.ones((wire_labels["junc_coords"].shape[0], 1))
|
|
|
|
+
|
|
|
|
+ keypoints= wire_labels["junc_coords"]
|
|
|
|
+ keypoints[:,2]=1
|
|
|
|
+ # keypoints[:,0]=keypoints[:,0]/shape[0]
|
|
|
|
+ # keypoints[:, 1] = keypoints[:, 1] / shape[1]
|
|
|
|
+ target["keypoints"]=keypoints
|
|
|
|
+ # 在 __getitem__ 方法中调用此函数
|
|
|
|
+ validate_keypoints(keypoints, shape[0], shape[1])
|
|
|
|
+ print(f'keypoints:{target["keypoints"].shape}')
|
|
|
|
+ return target
|
|
|
|
+
|
|
|
|
+ def show(self, idx):
|
|
|
|
+ image, target = self.__getitem__(idx)
|
|
|
|
+
|
|
|
|
+ cmap = plt.get_cmap("jet")
|
|
|
|
+ norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
|
|
|
|
+ sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
|
|
|
+ sm.set_array([])
|
|
|
|
+
|
|
|
|
+ def imshow(im):
|
|
|
|
+ plt.close()
|
|
|
|
+ plt.tight_layout()
|
|
|
|
+ plt.imshow(im)
|
|
|
|
+ plt.colorbar(sm, fraction=0.046)
|
|
|
|
+ plt.xlim([0, im.shape[0]])
|
|
|
|
+ plt.ylim([im.shape[0], 0])
|
|
|
|
+
|
|
|
|
+ def draw_vecl(lines, sline, juncs, junts, fn=None):
|
|
|
|
+ img_path = os.path.join(self.img_path, self.imgs[idx])
|
|
|
|
+ imshow(io.imread(img_path))
|
|
|
|
+ if len(lines) > 0 and not (lines[0] == 0).all():
|
|
|
|
+ for i, ((a, b), s) in enumerate(zip(lines, sline)):
|
|
|
|
+ if i > 0 and (lines[i] == lines[0]).all():
|
|
|
|
+ break
|
|
|
|
+ plt.plot([a[1], b[1]], [a[0], b[0]], c="red", linewidth=1) # a[1], b[1]无明确大小
|
|
|
|
+ if not (juncs[0] == 0).all():
|
|
|
|
+ for i, j in enumerate(juncs):
|
|
|
|
+ if i > 0 and (i == juncs[0]).all():
|
|
|
|
+ break
|
|
|
|
+ plt.scatter(j[1], j[0], c="red", s=2, zorder=100) # 原 s=64
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ img_path = os.path.join(self.img_path, self.imgs[idx])
|
|
|
|
+ img = PIL.Image.open(img_path).convert('RGB')
|
|
|
|
+ boxed_image = draw_bounding_boxes((self.default_transform(img) * 255).to(torch.uint8), target["boxes"],
|
|
|
|
+ colors="yellow", width=1)
|
|
|
|
+ plt.imshow(boxed_image.permute(1, 2, 0).numpy())
|
|
|
|
+ plt.show()
|
|
|
|
+
|
|
|
|
+ plt.show()
|
|
|
|
+ if fn != None:
|
|
|
|
+ plt.savefig(fn)
|
|
|
|
+
|
|
|
|
+ junc = target['wires']['junc_coords'].cpu().numpy() * 4
|
|
|
|
+ jtyp = target['wires']['jtyp'].cpu().numpy()
|
|
|
|
+ juncs = junc[jtyp == 0]
|
|
|
|
+ junts = junc[jtyp == 1]
|
|
|
|
+
|
|
|
|
+ lpre = target['wires']["lpre"].cpu().numpy() * 4
|
|
|
|
+ vecl_target = target['wires']["lpre_label"].cpu().numpy()
|
|
|
|
+ lpre = lpre[vecl_target == 1]
|
|
|
|
+
|
|
|
|
+ # draw_vecl(lpre, np.ones(lpre.shape[0]), juncs, junts, save_path)
|
|
|
|
+ draw_vecl(lpre, np.ones(lpre.shape[0]), juncs, junts)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ def show_img(self, img_path):
|
|
|
|
+ pass
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+ path=r"I:\wirenet_dateset"
|
|
|
|
+ dataset= KeypointDataset(dataset_path=path, dataset_type='train')
|
|
|
|
+ dataset.show(0)
|