|
@@ -0,0 +1,774 @@
|
|
|
|
+from typing import Any, Callable, List, Optional, Tuple, Union
|
|
|
|
+import torch
|
|
|
|
+from torch import nn
|
|
|
|
+from torchvision.ops import MultiScaleRoIAlign
|
|
|
|
+
|
|
|
|
+from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large
|
|
|
|
+from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
|
|
|
|
+from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
|
|
|
|
+from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
|
|
|
|
+from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
|
|
|
|
+from libs.vision_libs.ops import misc as misc_nn_ops
|
|
|
|
+from libs.vision_libs.transforms._presets import ObjectDetection
|
|
|
|
+from .line_head import LineRCNNHeads
|
|
|
|
+from .line_predictor import LineRCNNPredictor
|
|
|
|
+from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
|
|
|
|
+from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
|
|
|
|
+from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
|
|
|
|
+from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights
|
|
|
|
+from libs.vision_libs.models.detection._utils import overwrite_eps
|
|
|
|
+from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers
|
|
|
|
+from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
|
|
|
|
+
|
|
|
|
+from .roi_heads import RoIHeads
|
|
|
|
+from .trainer import Trainer
|
|
|
|
+from ..base import backbone_factory
|
|
|
|
+from ..base.base_detection_net import BaseDetectionNet
|
|
|
|
+import torch.nn.functional as F
|
|
|
|
+
|
|
|
|
+from ..config.config_tool import read_yaml
|
|
|
|
+
|
|
|
|
+FEATURE_DIM = 8
|
|
|
|
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
+
|
|
|
|
+__all__ = [
|
|
|
|
+ "LineNet",
|
|
|
|
+ "LineNet_ResNet50_FPN_Weights",
|
|
|
|
+ "LineNet_ResNet50_FPN_V2_Weights",
|
|
|
|
+ "LineNet_MobileNet_V3_Large_FPN_Weights",
|
|
|
|
+ "LineNet_MobileNet_V3_Large_320_FPN_Weights",
|
|
|
|
+ "linenet_resnet50_fpn",
|
|
|
|
+ "linenet_resnet50_fpn_v2",
|
|
|
|
+ "linenet_mobilenet_v3_large_fpn",
|
|
|
|
+ "linenet_mobilenet_v3_large_320_fpn",
|
|
|
|
+]
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _default_anchorgen():
|
|
|
|
+ anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
|
|
|
|
+ aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
|
|
|
|
+ return AnchorGenerator(anchor_sizes, aspect_ratios)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class LineNet(BaseDetectionNet):
|
|
|
|
+ def __init__(self, cfg, **kwargs):
|
|
|
|
+ cfg = read_yaml(cfg)
|
|
|
|
+ self.cfg=cfg
|
|
|
|
+ backbone = cfg['backbone']
|
|
|
|
+ print(f'LineNet Backbone:{backbone}')
|
|
|
|
+ num_classes = cfg['num_classes']
|
|
|
|
+
|
|
|
|
+ if backbone == 'resnet50_fpn':
|
|
|
|
+ backbone=backbone_factory.get_resnet50_fpn()
|
|
|
|
+ print(f'out_chanenels:{backbone.out_channels}')
|
|
|
|
+ elif backbone== 'mobilenet_v3_large_fpn':
|
|
|
|
+ backbone=backbone_factory.get_mobilenet_v3_large_fpn()
|
|
|
|
+ elif backbone=='resnet18_fpn':
|
|
|
|
+ backbone=backbone_factory.get_resnet18_fpn()
|
|
|
|
+
|
|
|
|
+ self.__construct__(backbone=backbone, num_classes=num_classes, **kwargs)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ def __construct__(
|
|
|
|
+ self,
|
|
|
|
+ backbone,
|
|
|
|
+ num_classes=None,
|
|
|
|
+ # transform parameters
|
|
|
|
+ min_size=512,
|
|
|
|
+ max_size=1333,
|
|
|
|
+ image_mean=None,
|
|
|
|
+ image_std=None,
|
|
|
|
+ # RPN parameters
|
|
|
|
+ rpn_anchor_generator=None,
|
|
|
|
+ rpn_head=None,
|
|
|
|
+ rpn_pre_nms_top_n_train=2000,
|
|
|
|
+ rpn_pre_nms_top_n_test=1000,
|
|
|
|
+ rpn_post_nms_top_n_train=2000,
|
|
|
|
+ rpn_post_nms_top_n_test=1000,
|
|
|
|
+ rpn_nms_thresh=0.7,
|
|
|
|
+ rpn_fg_iou_thresh=0.7,
|
|
|
|
+ rpn_bg_iou_thresh=0.3,
|
|
|
|
+ rpn_batch_size_per_image=256,
|
|
|
|
+ rpn_positive_fraction=0.5,
|
|
|
|
+ rpn_score_thresh=0.0,
|
|
|
|
+ # Box parameters
|
|
|
|
+ box_roi_pool=None,
|
|
|
|
+ box_head=None,
|
|
|
|
+ box_predictor=None,
|
|
|
|
+ box_score_thresh=0.05,
|
|
|
|
+ box_nms_thresh=0.5,
|
|
|
|
+ box_detections_per_img=100,
|
|
|
|
+ box_fg_iou_thresh=0.5,
|
|
|
|
+ box_bg_iou_thresh=0.5,
|
|
|
|
+ box_batch_size_per_image=512,
|
|
|
|
+ box_positive_fraction=0.25,
|
|
|
|
+ bbox_reg_weights=None,
|
|
|
|
+ # line parameters
|
|
|
|
+ line_head=None,
|
|
|
|
+ line_predictor=None,
|
|
|
|
+ **kwargs,
|
|
|
|
+ ):
|
|
|
|
+
|
|
|
|
+ if not hasattr(backbone, "out_channels"):
|
|
|
|
+ raise ValueError(
|
|
|
|
+ "backbone should contain an attribute out_channels "
|
|
|
|
+ "specifying the number of output channels (assumed to be the "
|
|
|
|
+ "same for all the levels)"
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
|
|
|
|
+ raise TypeError(
|
|
|
|
+ f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
|
|
|
|
+ )
|
|
|
|
+ if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
|
|
|
|
+ raise TypeError(
|
|
|
|
+ f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ if num_classes is not None:
|
|
|
|
+ if box_predictor is not None:
|
|
|
|
+ raise ValueError("num_classes should be None when box_predictor is specified")
|
|
|
|
+ else:
|
|
|
|
+ if box_predictor is None:
|
|
|
|
+ raise ValueError("num_classes should not be None when box_predictor is not specified")
|
|
|
|
+
|
|
|
|
+ out_channels = backbone.out_channels
|
|
|
|
+
|
|
|
|
+ if line_head is None:
|
|
|
|
+ num_class = 5
|
|
|
|
+ line_head = LineRCNNHeads(out_channels, num_class)
|
|
|
|
+
|
|
|
|
+ if line_predictor is None:
|
|
|
|
+ line_predictor = LineRCNNPredictor(self.cfg)
|
|
|
|
+
|
|
|
|
+ if rpn_anchor_generator is None:
|
|
|
|
+ rpn_anchor_generator = _default_anchorgen()
|
|
|
|
+ if rpn_head is None:
|
|
|
|
+ rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
|
|
|
|
+
|
|
|
|
+ rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
|
|
|
|
+ rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
|
|
|
|
+
|
|
|
|
+ rpn = RegionProposalNetwork(
|
|
|
|
+ rpn_anchor_generator,
|
|
|
|
+ rpn_head,
|
|
|
|
+ rpn_fg_iou_thresh,
|
|
|
|
+ rpn_bg_iou_thresh,
|
|
|
|
+ rpn_batch_size_per_image,
|
|
|
|
+ rpn_positive_fraction,
|
|
|
|
+ rpn_pre_nms_top_n,
|
|
|
|
+ rpn_post_nms_top_n,
|
|
|
|
+ rpn_nms_thresh,
|
|
|
|
+ score_thresh=rpn_score_thresh,
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ if box_roi_pool is None:
|
|
|
|
+ box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
|
|
|
|
+
|
|
|
|
+ if box_head is None:
|
|
|
|
+ resolution = box_roi_pool.output_size[0]
|
|
|
|
+ representation_size = 1024
|
|
|
|
+ box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
|
|
|
|
+
|
|
|
|
+ if box_predictor is None:
|
|
|
|
+ representation_size = 1024
|
|
|
|
+ box_predictor = BoxPredictor(representation_size, num_classes)
|
|
|
|
+
|
|
|
|
+ roi_heads = RoIHeads(
|
|
|
|
+ # Box
|
|
|
|
+ box_roi_pool,
|
|
|
|
+ box_head,
|
|
|
|
+ box_predictor,
|
|
|
|
+ line_head,
|
|
|
|
+ line_predictor,
|
|
|
|
+ box_fg_iou_thresh,
|
|
|
|
+ box_bg_iou_thresh,
|
|
|
|
+ box_batch_size_per_image,
|
|
|
|
+ box_positive_fraction,
|
|
|
|
+ bbox_reg_weights,
|
|
|
|
+ box_score_thresh,
|
|
|
|
+ box_nms_thresh,
|
|
|
|
+ box_detections_per_img,
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ if image_mean is None:
|
|
|
|
+ image_mean = [0.485, 0.456, 0.406]
|
|
|
|
+ if image_std is None:
|
|
|
|
+ image_std = [0.229, 0.224, 0.225]
|
|
|
|
+ transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
|
|
|
|
+
|
|
|
|
+ super().__init__(backbone, rpn, roi_heads, transform)
|
|
|
|
+
|
|
|
|
+ self.roi_heads = roi_heads
|
|
|
|
+
|
|
|
|
+ self.roi_heads.line_head = line_head
|
|
|
|
+ self.roi_heads.line_predictor = line_predictor
|
|
|
|
+
|
|
|
|
+ def train_by_cfg(self, cfg):
|
|
|
|
+ # cfg = read_yaml(cfg)
|
|
|
|
+ self.trainer = Trainer()
|
|
|
|
+ self.trainer.train_cfg(model=self,cfg=cfg)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class TwoMLPHead(nn.Module):
|
|
|
|
+ """
|
|
|
|
+ Standard heads for FPN-based models
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ in_channels (int): number of input channels
|
|
|
|
+ representation_size (int): size of the intermediate representation
|
|
|
|
+ """
|
|
|
|
+
|
|
|
|
+ def __init__(self, in_channels, representation_size):
|
|
|
|
+ super().__init__()
|
|
|
|
+
|
|
|
|
+ self.fc6 = nn.Linear(in_channels, representation_size)
|
|
|
|
+ self.fc7 = nn.Linear(representation_size, representation_size)
|
|
|
|
+
|
|
|
|
+ def forward(self, x):
|
|
|
|
+ x = x.flatten(start_dim=1)
|
|
|
|
+
|
|
|
|
+ x = F.relu(self.fc6(x))
|
|
|
|
+ x = F.relu(self.fc7(x))
|
|
|
|
+
|
|
|
|
+ return x
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class LineNetConvFCHead(nn.Sequential):
|
|
|
|
+ def __init__(
|
|
|
|
+ self,
|
|
|
|
+ input_size: Tuple[int, int, int],
|
|
|
|
+ conv_layers: List[int],
|
|
|
|
+ fc_layers: List[int],
|
|
|
|
+ norm_layer: Optional[Callable[..., nn.Module]] = None,
|
|
|
|
+ ):
|
|
|
|
+ """
|
|
|
|
+ Args:
|
|
|
|
+ input_size (Tuple[int, int, int]): the input size in CHW format.
|
|
|
|
+ conv_layers (list): feature dimensions of each Convolution layer
|
|
|
|
+ fc_layers (list): feature dimensions of each FCN layer
|
|
|
|
+ norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
|
|
|
|
+ """
|
|
|
|
+ in_channels, in_height, in_width = input_size
|
|
|
|
+
|
|
|
|
+ blocks = []
|
|
|
|
+ previous_channels = in_channels
|
|
|
|
+ for current_channels in conv_layers:
|
|
|
|
+ blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
|
|
|
|
+ previous_channels = current_channels
|
|
|
|
+ blocks.append(nn.Flatten())
|
|
|
|
+ previous_channels = previous_channels * in_height * in_width
|
|
|
|
+ for current_channels in fc_layers:
|
|
|
|
+ blocks.append(nn.Linear(previous_channels, current_channels))
|
|
|
|
+ blocks.append(nn.ReLU(inplace=True))
|
|
|
|
+ previous_channels = current_channels
|
|
|
|
+
|
|
|
|
+ super().__init__(*blocks)
|
|
|
|
+ for layer in self.modules():
|
|
|
|
+ if isinstance(layer, nn.Conv2d):
|
|
|
|
+ nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
|
|
|
|
+ if layer.bias is not None:
|
|
|
|
+ nn.init.zeros_(layer.bias)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class BoxPredictor(nn.Module):
|
|
|
|
+ """
|
|
|
|
+ Standard classification + bounding box regression layers
|
|
|
|
+ for Fast R-CNN.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ in_channels (int): number of input channels
|
|
|
|
+ num_classes (int): number of output classes (including background)
|
|
|
|
+ """
|
|
|
|
+
|
|
|
|
+ def __init__(self, in_channels, num_classes):
|
|
|
|
+ super().__init__()
|
|
|
|
+ self.cls_score = nn.Linear(in_channels, num_classes)
|
|
|
|
+ self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
|
|
|
|
+
|
|
|
|
+ def forward(self, x):
|
|
|
|
+ if x.dim() == 4:
|
|
|
|
+ torch._assert(
|
|
|
|
+ list(x.shape[2:]) == [1, 1],
|
|
|
|
+ f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
|
|
|
|
+ )
|
|
|
|
+ x = x.flatten(start_dim=1)
|
|
|
|
+ scores = self.cls_score(x)
|
|
|
|
+ bbox_deltas = self.bbox_pred(x)
|
|
|
|
+
|
|
|
|
+ return scores, bbox_deltas
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+_COMMON_META = {
|
|
|
|
+ "categories": _COCO_CATEGORIES,
|
|
|
|
+ "min_size": (1, 1),
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class LineNet_ResNet50_FPN_Weights(WeightsEnum):
|
|
|
|
+ COCO_V1 = Weights(
|
|
|
|
+ url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
|
|
|
|
+ transforms=ObjectDetection,
|
|
|
|
+ meta={
|
|
|
|
+ **_COMMON_META,
|
|
|
|
+ "num_params": 41755286,
|
|
|
|
+ "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn",
|
|
|
|
+ "_metrics": {
|
|
|
|
+ "COCO-val2017": {
|
|
|
|
+ "box_map": 37.0,
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "_ops": 134.38,
|
|
|
|
+ "_file_size": 159.743,
|
|
|
|
+ "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
|
|
|
|
+ },
|
|
|
|
+ )
|
|
|
|
+ DEFAULT = COCO_V1
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class LineNet_ResNet50_FPN_V2_Weights(WeightsEnum):
|
|
|
|
+ COCO_V1 = Weights(
|
|
|
|
+ url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_v2_coco-dd69338a.pth",
|
|
|
|
+ transforms=ObjectDetection,
|
|
|
|
+ meta={
|
|
|
|
+ **_COMMON_META,
|
|
|
|
+ "num_params": 43712278,
|
|
|
|
+ "recipe": "https://github.com/pytorch/vision/pull/5763",
|
|
|
|
+ "_metrics": {
|
|
|
|
+ "COCO-val2017": {
|
|
|
|
+ "box_map": 46.7,
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "_ops": 280.371,
|
|
|
|
+ "_file_size": 167.104,
|
|
|
|
+ "_docs": """These weights were produced using an enhanced training recipe to boost the model accuracy.""",
|
|
|
|
+ },
|
|
|
|
+ )
|
|
|
|
+ DEFAULT = COCO_V1
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class LineNet_MobileNet_V3_Large_FPN_Weights(WeightsEnum):
|
|
|
|
+ COCO_V1 = Weights(
|
|
|
|
+ url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
|
|
|
|
+ transforms=ObjectDetection,
|
|
|
|
+ meta={
|
|
|
|
+ **_COMMON_META,
|
|
|
|
+ "num_params": 19386354,
|
|
|
|
+ "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn",
|
|
|
|
+ "_metrics": {
|
|
|
|
+ "COCO-val2017": {
|
|
|
|
+ "box_map": 32.8,
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "_ops": 4.494,
|
|
|
|
+ "_file_size": 74.239,
|
|
|
|
+ "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
|
|
|
|
+ },
|
|
|
|
+ )
|
|
|
|
+ DEFAULT = COCO_V1
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class LineNet_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum):
|
|
|
|
+ COCO_V1 = Weights(
|
|
|
|
+ url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
|
|
|
|
+ transforms=ObjectDetection,
|
|
|
|
+ meta={
|
|
|
|
+ **_COMMON_META,
|
|
|
|
+ "num_params": 19386354,
|
|
|
|
+ "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn",
|
|
|
|
+ "_metrics": {
|
|
|
|
+ "COCO-val2017": {
|
|
|
|
+ "box_map": 22.8,
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "_ops": 0.719,
|
|
|
|
+ "_file_size": 74.239,
|
|
|
|
+ "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
|
|
|
|
+ },
|
|
|
|
+ )
|
|
|
|
+ DEFAULT = COCO_V1
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+@register_model()
|
|
|
|
+@handle_legacy_interface(
|
|
|
|
+ weights=("pretrained", LineNet_ResNet50_FPN_Weights.COCO_V1),
|
|
|
|
+ weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
|
|
|
|
+)
|
|
|
|
+def linenet_resnet50_fpn(
|
|
|
|
+ *,
|
|
|
|
+ weights: Optional[LineNet_ResNet50_FPN_Weights] = None,
|
|
|
|
+ progress: bool = True,
|
|
|
|
+ num_classes: Optional[int] = None,
|
|
|
|
+ weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
|
|
|
|
+ trainable_backbone_layers: Optional[int] = None,
|
|
|
|
+ **kwargs: Any,
|
|
|
|
+) -> LineNet:
|
|
|
|
+ """
|
|
|
|
+ Faster R-CNN model with a ResNet-50-FPN backbone from the `Faster R-CNN: Towards Real-Time Object
|
|
|
|
+ Detection with Region Proposal Networks <https://arxiv.org/abs/1506.01497>`__
|
|
|
|
+ paper.
|
|
|
|
+
|
|
|
|
+ .. betastatus:: detection module
|
|
|
|
+
|
|
|
|
+ The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
|
|
|
|
+ image, and should be in ``0-1`` range. Different images can have different sizes.
|
|
|
|
+
|
|
|
|
+ The behavior of the model changes depending on if it is in training or evaluation mode.
|
|
|
|
+
|
|
|
|
+ During training, the model expects both the input tensors and a targets (list of dictionary),
|
|
|
|
+ containing:
|
|
|
|
+
|
|
|
|
+ - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
|
|
|
|
+ ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
|
|
|
|
+ - labels (``Int64Tensor[N]``): the class label for each ground-truth box
|
|
|
|
+
|
|
|
|
+ The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
|
|
|
|
+ losses for both the RPN and the R-CNN.
|
|
|
|
+
|
|
|
|
+ During inference, the model requires only the input tensors, and returns the post-processed
|
|
|
|
+ predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
|
|
|
|
+ follows, where ``N`` is the number of detections:
|
|
|
|
+
|
|
|
|
+ - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
|
|
|
|
+ ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
|
|
|
|
+ - labels (``Int64Tensor[N]``): the predicted labels for each detection
|
|
|
|
+ - scores (``Tensor[N]``): the scores of each detection
|
|
|
|
+
|
|
|
|
+ For more details on the output, you may refer to :ref:`instance_seg_output`.
|
|
|
|
+
|
|
|
|
+ Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.
|
|
|
|
+
|
|
|
|
+ Example::
|
|
|
|
+
|
|
|
|
+ >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
|
|
|
+ >>> # For training
|
|
|
|
+ >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
|
|
|
|
+ >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
|
|
|
|
+ >>> labels = torch.randint(1, 91, (4, 11))
|
|
|
|
+ >>> images = list(image for image in images)
|
|
|
|
+ >>> targets = []
|
|
|
|
+ >>> for i in range(len(images)):
|
|
|
|
+ >>> d = {}
|
|
|
|
+ >>> d['boxes'] = boxes[i]
|
|
|
|
+ >>> d['labels'] = labels[i]
|
|
|
|
+ >>> targets.append(d)
|
|
|
|
+ >>> output = model(images, targets)
|
|
|
|
+ >>> # For inference
|
|
|
|
+ >>> model.eval()
|
|
|
|
+ >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
|
|
|
|
+ >>> predictions = model(x)
|
|
|
|
+ >>>
|
|
|
|
+ >>> # optionally, if you want to export the model to ONNX:
|
|
|
|
+ >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights`, optional): The
|
|
|
|
+ pretrained weights to use. See
|
|
|
|
+ :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights` below for
|
|
|
|
+ more details, and possible values. By default, no pre-trained
|
|
|
|
+ weights are used.
|
|
|
|
+ progress (bool, optional): If True, displays a progress bar of the
|
|
|
|
+ download to stderr. Default is True.
|
|
|
|
+ num_classes (int, optional): number of output classes of the model (including the background)
|
|
|
|
+ weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
|
|
|
|
+ pretrained weights for the backbone.
|
|
|
|
+ trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
|
|
|
|
+ final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
|
|
|
|
+ trainable. If ``None`` is passed (the default) this value is set to 3.
|
|
|
|
+ **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
|
|
|
|
+ base class. Please refer to the `source code
|
|
|
|
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
|
|
|
|
+ for more details about this class.
|
|
|
|
+
|
|
|
|
+ .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights
|
|
|
|
+ :members:
|
|
|
|
+ """
|
|
|
|
+ weights = LineNet_ResNet50_FPN_Weights.verify(weights)
|
|
|
|
+ weights_backbone = ResNet50_Weights.verify(weights_backbone)
|
|
|
|
+
|
|
|
|
+ if weights is not None:
|
|
|
|
+ weights_backbone = None
|
|
|
|
+ num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
|
|
|
|
+ elif num_classes is None:
|
|
|
|
+ num_classes = 91
|
|
|
|
+
|
|
|
|
+ is_trained = weights is not None or weights_backbone is not None
|
|
|
|
+ trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
|
|
|
|
+ norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
|
|
|
|
+
|
|
|
|
+ backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
|
|
|
|
+ backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
|
|
|
|
+ model = LineNet(backbone, num_classes=num_classes, **kwargs)
|
|
|
|
+
|
|
|
|
+ if weights is not None:
|
|
|
|
+ model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
|
|
|
+ if weights == LineNet_ResNet50_FPN_Weights.COCO_V1:
|
|
|
|
+ overwrite_eps(model, 0.0)
|
|
|
|
+
|
|
|
|
+ return model
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+@register_model()
|
|
|
|
+@handle_legacy_interface(
|
|
|
|
+ weights=("pretrained", LineNet_ResNet50_FPN_V2_Weights.COCO_V1),
|
|
|
|
+ weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
|
|
|
|
+)
|
|
|
|
+def linenet_resnet50_fpn_v2(
|
|
|
|
+ *,
|
|
|
|
+ weights: Optional[LineNet_ResNet50_FPN_V2_Weights] = None,
|
|
|
|
+ progress: bool = True,
|
|
|
|
+ num_classes: Optional[int] = None,
|
|
|
|
+ weights_backbone: Optional[ResNet50_Weights] = None,
|
|
|
|
+ trainable_backbone_layers: Optional[int] = None,
|
|
|
|
+ **kwargs: Any,
|
|
|
|
+) -> LineNet:
|
|
|
|
+ """
|
|
|
|
+ Constructs an improved Faster R-CNN model with a ResNet-50-FPN backbone from `Benchmarking Detection
|
|
|
|
+ Transfer Learning with Vision Transformers <https://arxiv.org/abs/2111.11429>`__ paper.
|
|
|
|
+
|
|
|
|
+ .. betastatus:: detection module
|
|
|
|
+
|
|
|
|
+ It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
|
|
|
|
+ :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
|
|
|
|
+ details.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights`, optional): The
|
|
|
|
+ pretrained weights to use. See
|
|
|
|
+ :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights` below for
|
|
|
|
+ more details, and possible values. By default, no pre-trained
|
|
|
|
+ weights are used.
|
|
|
|
+ progress (bool, optional): If True, displays a progress bar of the
|
|
|
|
+ download to stderr. Default is True.
|
|
|
|
+ num_classes (int, optional): number of output classes of the model (including the background)
|
|
|
|
+ weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
|
|
|
|
+ pretrained weights for the backbone.
|
|
|
|
+ trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
|
|
|
|
+ final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
|
|
|
|
+ trainable. If ``None`` is passed (the default) this value is set to 3.
|
|
|
|
+ **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
|
|
|
|
+ base class. Please refer to the `source code
|
|
|
|
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
|
|
|
|
+ for more details about this class.
|
|
|
|
+
|
|
|
|
+ .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights
|
|
|
|
+ :members:
|
|
|
|
+ """
|
|
|
|
+ weights = LineNet_ResNet50_FPN_V2_Weights.verify(weights)
|
|
|
|
+ weights_backbone = ResNet50_Weights.verify(weights_backbone)
|
|
|
|
+
|
|
|
|
+ if weights is not None:
|
|
|
|
+ weights_backbone = None
|
|
|
|
+ num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
|
|
|
|
+ elif num_classes is None:
|
|
|
|
+ num_classes = 91
|
|
|
|
+
|
|
|
|
+ is_trained = weights is not None or weights_backbone is not None
|
|
|
|
+ trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
|
|
|
|
+
|
|
|
|
+ backbone = resnet50(weights=weights_backbone, progress=progress)
|
|
|
|
+ backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers, norm_layer=nn.BatchNorm2d)
|
|
|
|
+ rpn_anchor_generator = _default_anchorgen()
|
|
|
|
+ rpn_head = RPNHead(backbone.out_channels, rpn_anchor_generator.num_anchors_per_location()[0], conv_depth=2)
|
|
|
|
+ box_head = LineNetConvFCHead(
|
|
|
|
+ (backbone.out_channels, 7, 7), [256, 256, 256, 256], [1024], norm_layer=nn.BatchNorm2d
|
|
|
|
+ )
|
|
|
|
+ model = LineNet(
|
|
|
|
+ backbone,
|
|
|
|
+ num_classes=num_classes,
|
|
|
|
+ rpn_anchor_generator=rpn_anchor_generator,
|
|
|
|
+ rpn_head=rpn_head,
|
|
|
|
+ box_head=box_head,
|
|
|
|
+ **kwargs,
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ if weights is not None:
|
|
|
|
+ model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
|
|
|
+
|
|
|
|
+ return model
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _linenet_mobilenet_v3_large_fpn(
|
|
|
|
+ *,
|
|
|
|
+ weights: Optional[Union[LineNet_MobileNet_V3_Large_FPN_Weights, LineNet_MobileNet_V3_Large_320_FPN_Weights]],
|
|
|
|
+ progress: bool,
|
|
|
|
+ num_classes: Optional[int],
|
|
|
|
+ weights_backbone: Optional[MobileNet_V3_Large_Weights],
|
|
|
|
+ trainable_backbone_layers: Optional[int],
|
|
|
|
+ **kwargs: Any,
|
|
|
|
+) -> LineNet:
|
|
|
|
+ if weights is not None:
|
|
|
|
+ weights_backbone = None
|
|
|
|
+ num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
|
|
|
|
+ elif num_classes is None:
|
|
|
|
+ num_classes = 91
|
|
|
|
+
|
|
|
|
+ is_trained = weights is not None or weights_backbone is not None
|
|
|
|
+ trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
|
|
|
|
+ norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
|
|
|
|
+
|
|
|
|
+ backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
|
|
|
|
+ backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
|
|
|
|
+ anchor_sizes = (
|
|
|
|
+ (
|
|
|
|
+ 32,
|
|
|
|
+ 64,
|
|
|
|
+ 128,
|
|
|
|
+ 256,
|
|
|
|
+ 512,
|
|
|
|
+ ),
|
|
|
|
+ ) * 3
|
|
|
|
+ aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
|
|
|
|
+ model = LineNet(
|
|
|
|
+ backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ if weights is not None:
|
|
|
|
+ model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
|
|
|
+
|
|
|
|
+ return model
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+@register_model()
|
|
|
|
+@handle_legacy_interface(
|
|
|
|
+ weights=("pretrained", LineNet_MobileNet_V3_Large_320_FPN_Weights.COCO_V1),
|
|
|
|
+ weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
|
|
|
|
+)
|
|
|
|
+def linenet_mobilenet_v3_large_320_fpn(
|
|
|
|
+ *,
|
|
|
|
+ weights: Optional[LineNet_MobileNet_V3_Large_320_FPN_Weights] = None,
|
|
|
|
+ progress: bool = True,
|
|
|
|
+ num_classes: Optional[int] = None,
|
|
|
|
+ weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
|
|
|
|
+ trainable_backbone_layers: Optional[int] = None,
|
|
|
|
+ **kwargs: Any,
|
|
|
|
+) -> LineNet:
|
|
|
|
+ """
|
|
|
|
+ Low resolution Faster R-CNN model with a MobileNetV3-Large backbone tuned for mobile use cases.
|
|
|
|
+
|
|
|
|
+ .. betastatus:: detection module
|
|
|
|
+
|
|
|
|
+ It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
|
|
|
|
+ :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
|
|
|
|
+ details.
|
|
|
|
+
|
|
|
|
+ Example::
|
|
|
|
+
|
|
|
|
+ >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT)
|
|
|
|
+ >>> model.eval()
|
|
|
|
+ >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
|
|
|
|
+ >>> predictions = model(x)
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights`, optional): The
|
|
|
|
+ pretrained weights to use. See
|
|
|
|
+ :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights` below for
|
|
|
|
+ more details, and possible values. By default, no pre-trained
|
|
|
|
+ weights are used.
|
|
|
|
+ progress (bool, optional): If True, displays a progress bar of the
|
|
|
|
+ download to stderr. Default is True.
|
|
|
|
+ num_classes (int, optional): number of output classes of the model (including the background)
|
|
|
|
+ weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
|
|
|
|
+ pretrained weights for the backbone.
|
|
|
|
+ trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
|
|
|
|
+ final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
|
|
|
|
+ trainable. If ``None`` is passed (the default) this value is set to 3.
|
|
|
|
+ **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
|
|
|
|
+ base class. Please refer to the `source code
|
|
|
|
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
|
|
|
|
+ for more details about this class.
|
|
|
|
+
|
|
|
|
+ .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights
|
|
|
|
+ :members:
|
|
|
|
+ """
|
|
|
|
+ weights = LineNet_MobileNet_V3_Large_320_FPN_Weights.verify(weights)
|
|
|
|
+ weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)
|
|
|
|
+
|
|
|
|
+ defaults = {
|
|
|
|
+ "min_size": 320,
|
|
|
|
+ "max_size": 640,
|
|
|
|
+ "rpn_pre_nms_top_n_test": 150,
|
|
|
|
+ "rpn_post_nms_top_n_test": 150,
|
|
|
|
+ "rpn_score_thresh": 0.05,
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ kwargs = {**defaults, **kwargs}
|
|
|
|
+ return _linenet_mobilenet_v3_large_fpn(
|
|
|
|
+ weights=weights,
|
|
|
|
+ progress=progress,
|
|
|
|
+ num_classes=num_classes,
|
|
|
|
+ weights_backbone=weights_backbone,
|
|
|
|
+ trainable_backbone_layers=trainable_backbone_layers,
|
|
|
|
+ **kwargs,
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+@register_model()
|
|
|
|
+@handle_legacy_interface(
|
|
|
|
+ weights=("pretrained", LineNet_MobileNet_V3_Large_FPN_Weights.COCO_V1),
|
|
|
|
+ weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
|
|
|
|
+)
|
|
|
|
+def linenet_mobilenet_v3_large_fpn(
|
|
|
|
+ *,
|
|
|
|
+ weights: Optional[LineNet_MobileNet_V3_Large_FPN_Weights] = None,
|
|
|
|
+ progress: bool = True,
|
|
|
|
+ num_classes: Optional[int] = None,
|
|
|
|
+ weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
|
|
|
|
+ trainable_backbone_layers: Optional[int] = None,
|
|
|
|
+ **kwargs: Any,
|
|
|
|
+) -> LineNet:
|
|
|
|
+ """
|
|
|
|
+ Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
|
|
|
|
+
|
|
|
|
+ .. betastatus:: detection module
|
|
|
|
+
|
|
|
|
+ It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
|
|
|
|
+ :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
|
|
|
|
+ details.
|
|
|
|
+
|
|
|
|
+ Example::
|
|
|
|
+
|
|
|
|
+ >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT)
|
|
|
|
+ >>> model.eval()
|
|
|
|
+ >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
|
|
|
|
+ >>> predictions = model(x)
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights`, optional): The
|
|
|
|
+ pretrained weights to use. See
|
|
|
|
+ :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights` below for
|
|
|
|
+ more details, and possible values. By default, no pre-trained
|
|
|
|
+ weights are used.
|
|
|
|
+ progress (bool, optional): If True, displays a progress bar of the
|
|
|
|
+ download to stderr. Default is True.
|
|
|
|
+ num_classes (int, optional): number of output classes of the model (including the background)
|
|
|
|
+ weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
|
|
|
|
+ pretrained weights for the backbone.
|
|
|
|
+ trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
|
|
|
|
+ final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
|
|
|
|
+ trainable. If ``None`` is passed (the default) this value is set to 3.
|
|
|
|
+ **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
|
|
|
|
+ base class. Please refer to the `source code
|
|
|
|
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
|
|
|
|
+ for more details about this class.
|
|
|
|
+
|
|
|
|
+ .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights
|
|
|
|
+ :members:
|
|
|
|
+ """
|
|
|
|
+ weights = LineNet_MobileNet_V3_Large_FPN_Weights.verify(weights)
|
|
|
|
+ weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)
|
|
|
|
+
|
|
|
|
+ defaults = {
|
|
|
|
+ "rpn_score_thresh": 0.05,
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ kwargs = {**defaults, **kwargs}
|
|
|
|
+ return _linenet_mobilenet_v3_large_fpn(
|
|
|
|
+ weights=weights,
|
|
|
|
+ progress=progress,
|
|
|
|
+ num_classes=num_classes,
|
|
|
|
+ weights_backbone=weights_backbone,
|
|
|
|
+ trainable_backbone_layers=trainable_backbone_layers,
|
|
|
|
+ **kwargs,
|
|
|
|
+ )
|