|
@@ -0,0 +1,371 @@
|
|
|
+import time
|
|
|
+
|
|
|
+import skimage
|
|
|
+
|
|
|
+# from models.line_detect.postprocess import show_predict, show_box, show_box_or_line, show_box_and_line, \
|
|
|
+# show_line_optimized, show_line, show_all
|
|
|
+import os
|
|
|
+
|
|
|
+import torch
|
|
|
+from PIL import Image
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+import matplotlib as mpl
|
|
|
+import numpy as np
|
|
|
+from models.line_detect.line_net import linenet_resnet50_fpn
|
|
|
+from torchvision import transforms
|
|
|
+
|
|
|
+# from models.wirenet.postprocess import postprocess
|
|
|
+from models.wirenet.postprocess import postprocess
|
|
|
+from rtree import index
|
|
|
+
|
|
|
+from datetime import datetime
|
|
|
+
|
|
|
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
+
|
|
|
+
|
|
|
+def load_best_model(model, save_path, device):
|
|
|
+ if os.path.exists(save_path):
|
|
|
+ checkpoint = torch.load(save_path, map_location=device)
|
|
|
+ model.load_state_dict(checkpoint['model_state_dict'])
|
|
|
+ # if optimizer is not None:
|
|
|
+ # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
|
|
+ epoch = checkpoint['epoch']
|
|
|
+ loss = checkpoint['loss']
|
|
|
+ print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
|
|
|
+ else:
|
|
|
+ print(f"No saved model found at {save_path}")
|
|
|
+ return model
|
|
|
+
|
|
|
+
|
|
|
+def box_line_(imgs, pred, length=False): # 默认置信度
|
|
|
+ im = imgs.permute(1, 2, 0).cpu().numpy()
|
|
|
+ line_data = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
|
|
|
+ line_scores = pred[-1]['wires']['score'].cpu().numpy()[0]
|
|
|
+
|
|
|
+ diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
|
|
|
+ line, score = postprocess(line_data, line_scores, diag * 0.01, 0, False)
|
|
|
+ for idx, box_ in enumerate(pred[0:-1]):
|
|
|
+ box = box_['boxes'] # 是一个tensor
|
|
|
+ # line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
|
|
|
+ # score = pred[-1]['wires']['score'][idx]
|
|
|
+
|
|
|
+ # diag = (512 ** 2 + 512 ** 2) ** 0.5
|
|
|
+ # line, score = postprocess(line, score, diag * 0.01, 0, False)
|
|
|
+
|
|
|
+ line_ = []
|
|
|
+ score_ = []
|
|
|
+
|
|
|
+ for i in box:
|
|
|
+ score_max = 0.0
|
|
|
+ tmp = [[0.0, 0.0], [0.0, 0.0]]
|
|
|
+
|
|
|
+ for j in range(len(line)):
|
|
|
+ if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and
|
|
|
+ line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and
|
|
|
+ line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and
|
|
|
+ line[j][0][0] <= i[3] and line[j][1][0] <= i[3]):
|
|
|
+
|
|
|
+ # # 计算线段长度
|
|
|
+ # length = np.linalg.norm(line[j][0] - line[j][1])
|
|
|
+ # if length > score_max:
|
|
|
+ # tmp = line[j]
|
|
|
+ # score_max = score[j]
|
|
|
+
|
|
|
+ if score[j] > score_max:
|
|
|
+ tmp = line[j]
|
|
|
+ score_max = score[j]
|
|
|
+ line_.append(tmp)
|
|
|
+ score_.append(score_max)
|
|
|
+ processed_list = torch.tensor(line_)
|
|
|
+ pred[idx]['line'] = processed_list
|
|
|
+
|
|
|
+ processed_s_list = torch.tensor(score_)
|
|
|
+ pred[idx]['line_score'] = processed_s_list
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+def box_line_optimized(pred):
|
|
|
+ # 创建R-tree索引
|
|
|
+ idx = index.Index()
|
|
|
+
|
|
|
+ # 将所有线段添加到R-tree中
|
|
|
+ lines = pred[-1]['wires']['lines'] # 形状为[1, 2500, 2, 2]
|
|
|
+ scores = pred[-1]['wires']['score'][0] # 假设形状为[2500]
|
|
|
+
|
|
|
+ # 提取并处理所有线段
|
|
|
+ for idx_line in range(lines.shape[1]): # 遍历2500条线段
|
|
|
+ line_tensor = lines[0, idx_line].cpu().numpy() / 128 * 512 # 转换为numpy数组并调整比例
|
|
|
+ x_min = float(min(line_tensor[0][0], line_tensor[1][0]))
|
|
|
+ y_min = float(min(line_tensor[0][1], line_tensor[1][1]))
|
|
|
+ x_max = float(max(line_tensor[0][0], line_tensor[1][0]))
|
|
|
+ y_max = float(max(line_tensor[0][1], line_tensor[1][1]))
|
|
|
+ idx.insert(idx_line, (max(0, x_min - 256), max(0, y_min - 256), min(512, x_max + 256), min(512, y_max + 256)))
|
|
|
+
|
|
|
+ for idx_box, box_ in enumerate(pred[0:-1]):
|
|
|
+ box = box_['boxes'].cpu().numpy() # 确保将张量转换为numpy数组
|
|
|
+ line_ = []
|
|
|
+ score_ = []
|
|
|
+
|
|
|
+ for i in box:
|
|
|
+ score_max = 0.0
|
|
|
+ tmp = [[0.0, 0.0], [0.0, 0.0]]
|
|
|
+
|
|
|
+ # 获取与当前box可能相交的所有线段
|
|
|
+ possible_matches = list(idx.intersection((i[0], i[1], i[2], i[3])))
|
|
|
+
|
|
|
+ for j in possible_matches:
|
|
|
+ line_j = lines[0, j].cpu().numpy() / 128 * 512
|
|
|
+ if (line_j[0][1] >= i[0] and line_j[1][1] >= i[0] and # 注意这里交换了x和y
|
|
|
+ line_j[0][1] <= i[2] and line_j[1][1] <= i[2] and
|
|
|
+ line_j[0][0] >= i[1] and line_j[1][0] >= i[1] and
|
|
|
+ line_j[0][0] <= i[3] and line_j[1][0] <= i[3]):
|
|
|
+
|
|
|
+ if scores[j] > score_max:
|
|
|
+ tmp = line_j
|
|
|
+ score_max = scores[j]
|
|
|
+
|
|
|
+ line_.append(tmp)
|
|
|
+ score_.append(score_max)
|
|
|
+
|
|
|
+ processed_list = torch.tensor(line_)
|
|
|
+ pred[idx_box]['line'] = processed_list
|
|
|
+
|
|
|
+ processed_s_list = torch.tensor(score_)
|
|
|
+ pred[idx_box]['line_score'] = processed_s_list
|
|
|
+
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+def set_thresholds(threshold):
|
|
|
+ if isinstance(threshold, list):
|
|
|
+ if len(threshold) != 2:
|
|
|
+ raise ValueError("Threshold list must contain exactly two elements.")
|
|
|
+ a, b = threshold
|
|
|
+ elif isinstance(threshold, (int, float)):
|
|
|
+ a = b = threshold
|
|
|
+ else:
|
|
|
+ raise TypeError("Threshold must be either a list of two numbers or a single number.")
|
|
|
+
|
|
|
+ return a, b
|
|
|
+
|
|
|
+def color():
|
|
|
+ return [
|
|
|
+ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
|
|
|
+ '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
|
|
|
+ '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
|
|
|
+ '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
|
|
|
+ '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
|
|
|
+ '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
|
|
|
+ '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
|
|
|
+ '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
|
|
|
+ '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
|
|
|
+ '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
|
|
|
+ '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
|
|
|
+ '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
|
|
|
+ '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
|
|
|
+ '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
|
|
|
+ '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
|
|
|
+ '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
|
|
|
+ '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
|
|
|
+ '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
|
|
|
+ '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
|
|
|
+ '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
|
|
|
+ ]
|
|
|
+
|
|
|
+def show_all(imgs, pred, threshold, save_path, show):
|
|
|
+ col = color()
|
|
|
+ box_th, line_th = set_thresholds(threshold)
|
|
|
+ im = imgs.permute(1, 2, 0)
|
|
|
+
|
|
|
+ boxes = pred[0]['boxes'].cpu().numpy()
|
|
|
+ box_scores = pred[0]['scores'].cpu().numpy()
|
|
|
+ line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
|
|
|
+ line_score = pred[-1]['wires']['score'].cpu().numpy()[0]
|
|
|
+
|
|
|
+ diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
|
|
|
+ line, line_score = postprocess(line, line_score, diag * 0.01, 0, False)
|
|
|
+
|
|
|
+ fig, axs = plt.subplots(1, 3, figsize=(10, 10))
|
|
|
+
|
|
|
+ axs[0].imshow(np.array(im))
|
|
|
+ for idx, box in enumerate(boxes):
|
|
|
+ if box_scores[idx] < box_th:
|
|
|
+ continue
|
|
|
+ x0, y0, x1, y1 = box
|
|
|
+ axs[0].add_patch(
|
|
|
+ plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
|
|
|
+ axs[0].set_title('Boxes')
|
|
|
+
|
|
|
+ axs[1].imshow(np.array(im))
|
|
|
+ for idx, (a, b) in enumerate(line):
|
|
|
+ if line_score[idx] < line_th:
|
|
|
+ continue
|
|
|
+ axs[1].scatter(a[1], a[0], c='#871F78', s=2)
|
|
|
+ axs[1].scatter(b[1], b[0], c='#871F78', s=2)
|
|
|
+ axs[1].plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1)
|
|
|
+ axs[1].set_title('Lines')
|
|
|
+
|
|
|
+ axs[2].imshow(np.array(im))
|
|
|
+ lines = pred[0]['line'].cpu().numpy()
|
|
|
+ line_scores = pred[0]['line_score'].cpu().numpy()
|
|
|
+ idx = 0
|
|
|
+ tmp = np.array([[0.0, 0.0], [0.0, 0.0]])
|
|
|
+ for box, line, box_score, line_score in zip(boxes, lines, box_scores, line_scores):
|
|
|
+ x0, y0, x1, y1 = box
|
|
|
+ # 框中无线的跳过
|
|
|
+ if np.array_equal(line, tmp):
|
|
|
+ continue
|
|
|
+ a, b = line
|
|
|
+ if box_score >= 0.7 or line_score >= 0.9:
|
|
|
+ axs[2].add_patch(
|
|
|
+ plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
|
|
|
+ axs[2].scatter(a[1], a[0], c='#871F78', s=10)
|
|
|
+ axs[2].scatter(b[1], b[0], c='#871F78', s=10)
|
|
|
+ axs[2].plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1)
|
|
|
+ idx = idx + 1
|
|
|
+ axs[2].set_title('Boxes and Lines')
|
|
|
+
|
|
|
+ if save_path:
|
|
|
+ save_path = os.path.join(datetime.now().strftime("%Y%m%d_%H%M%S"), 'box_line.png')
|
|
|
+ os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
|
|
+
|
|
|
+ plt.savefig(save_path)
|
|
|
+ print(f"Saved result image to {save_path}")
|
|
|
+
|
|
|
+ if show:
|
|
|
+ # 调整子图之间的距离,防止标题和标签重叠
|
|
|
+ plt.tight_layout()
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+def show_box_or_line(imgs, pred, threshold, save_path = None, show_line=False, show_box=False):
|
|
|
+ col = color()
|
|
|
+ box_th, line_th = set_thresholds(threshold)
|
|
|
+ im = imgs.permute(1, 2, 0)
|
|
|
+
|
|
|
+ boxes = pred[0]['boxes'].cpu().numpy()
|
|
|
+ box_scores = pred[0]['scores'].cpu().numpy()
|
|
|
+ line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
|
|
|
+ line_score = pred[-1]['wires']['score'].cpu().numpy()[0]
|
|
|
+
|
|
|
+ # 可视化预测结
|
|
|
+ fig, ax = plt.subplots(figsize=(10, 10))
|
|
|
+ ax.imshow(np.array(im))
|
|
|
+
|
|
|
+ if show_box:
|
|
|
+ for idx, box in enumerate(boxes):
|
|
|
+ if box_scores[idx] < box_th:
|
|
|
+ continue
|
|
|
+ x0, y0, x1, y1 = box
|
|
|
+ ax.add_patch(
|
|
|
+ plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
|
|
|
+ if save_path:
|
|
|
+ save_path = os.path.join(datetime.now().strftime("%Y%m%d_%H%M%S"), 'box.png')
|
|
|
+ os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
|
|
+
|
|
|
+ plt.savefig(save_path)
|
|
|
+ print(f"Saved result image to {save_path}")
|
|
|
+
|
|
|
+
|
|
|
+ if show_line:
|
|
|
+ for idx, (a, b) in enumerate(line):
|
|
|
+ if line_score[idx] < line_th:
|
|
|
+ continue
|
|
|
+ ax.scatter(a[1], a[0], c='#871F78', s=2)
|
|
|
+ ax.scatter(b[1], b[0], c='#871F78', s=2)
|
|
|
+ ax.plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1)
|
|
|
+ if save_path:
|
|
|
+ save_path = os.path.join(datetime.now().strftime("%Y%m%d_%H%M%S"), 'line.png')
|
|
|
+ os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
|
|
+
|
|
|
+ plt.savefig(save_path)
|
|
|
+ print(f"Saved result image to {save_path}")
|
|
|
+
|
|
|
+
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+
|
|
|
+def show_predict(imgs, pred, threshold, t_start):
|
|
|
+ col = color()
|
|
|
+ box_th, line_th = set_thresholds(threshold)
|
|
|
+ im = imgs.permute(1, 2, 0) # 处理为 [512, 512, 3]
|
|
|
+ boxes = pred[0]['boxes'].cpu().numpy()
|
|
|
+ box_scores = pred[0]['scores'].cpu().numpy()
|
|
|
+ lines = pred[0]['line'].cpu().numpy()
|
|
|
+ line_scores = pred[0]['line_score'].cpu().numpy()
|
|
|
+
|
|
|
+ # 可视化预测结
|
|
|
+ fig, ax = plt.subplots(figsize=(10, 10))
|
|
|
+ ax.imshow(np.array(im))
|
|
|
+ idx = 0
|
|
|
+
|
|
|
+ tmp = np.array([[0.0, 0.0], [0.0, 0.0]])
|
|
|
+
|
|
|
+ for box, line, box_score, line_score in zip(boxes, lines, box_scores, line_scores):
|
|
|
+ x0, y0, x1, y1 = box
|
|
|
+ # 框中无线的跳过
|
|
|
+ if np.array_equal(line, tmp):
|
|
|
+ continue
|
|
|
+ a, b = line
|
|
|
+ if box_score >= box_th or line_score >= line_th:
|
|
|
+ ax.add_patch(
|
|
|
+ plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
|
|
|
+ ax.scatter(a[1], a[0], c='#871F78', s=10)
|
|
|
+ ax.scatter(b[1], b[0], c='#871F78', s=10)
|
|
|
+ ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1)
|
|
|
+ idx = idx + 1
|
|
|
+ t_end = time.time()
|
|
|
+ print(f'predict used:{t_end - t_start}')
|
|
|
+
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+
|
|
|
+def predict(pt_path, model, img, type=0, threshold=0.5, save_path=None, show=False):
|
|
|
+ model = load_best_model(model, pt_path, device)
|
|
|
+
|
|
|
+ model.eval()
|
|
|
+
|
|
|
+ if isinstance(img, str):
|
|
|
+ img = Image.open(img).convert("RGB")
|
|
|
+
|
|
|
+ transform = transforms.ToTensor()
|
|
|
+ img_tensor = transform(img) # [3, 512, 512]
|
|
|
+
|
|
|
+ # 将图像调整为512x512大小
|
|
|
+ t_start = time.time()
|
|
|
+ im = img_tensor.permute(1, 2, 0) # [512, 512, 3]
|
|
|
+ im_resized = skimage.transform.resize(im.cpu().numpy().astype(np.float32), (512, 512)) # (512, 512, 3)
|
|
|
+ img_ = torch.tensor(im_resized).permute(2, 0, 1)
|
|
|
+ t_end = time.time()
|
|
|
+ print(f'switch img used:{t_end - t_start}')
|
|
|
+
|
|
|
+ with torch.no_grad():
|
|
|
+ predictions = model([img_.to(device)])
|
|
|
+ # print(predictions)
|
|
|
+
|
|
|
+ t_start = time.time()
|
|
|
+ pred = box_line_(img_, predictions) # 线框匹配
|
|
|
+ t_end = time.time()
|
|
|
+ print(f'Matched boxes and lines used: {t_end - t_start:.4f} seconds')
|
|
|
+
|
|
|
+ if type == 0:
|
|
|
+ show_all(img_, pred, threshold, save_path=True, show=True)
|
|
|
+ elif type == 1:
|
|
|
+ show_box_or_line(img_, predictions, threshold, save_path=True, show_line=True) # 参数确定画什么
|
|
|
+ elif type == 2:
|
|
|
+ show_box_or_line(img_, predictions, threshold, save_path=True, show_box=True) # 参数确定画什么
|
|
|
+ elif type == 3:
|
|
|
+ show_predict(img_, pred, threshold, t_start)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ t_start = time.time()
|
|
|
+ print(f'start to predict:{t_start}')
|
|
|
+ model = linenet_resnet50_fpn().to(device)
|
|
|
+ pt_path = r'D:\python\PycharmProjects\20250214\weight\best.pth'
|
|
|
+ img_path = r'C:\Users\m2337\Desktop\p\20250226142919.png'
|
|
|
+ # predict(pt_path, model, img_path)
|
|
|
+
|
|
|
+ predict(pt_path, model, img_path, type=2, threshold=0.5, save_path=None, show=False)
|
|
|
+
|
|
|
+ t_end = time.time()
|
|
|
+ print(f'predict used:{t_end - t_start}')
|