123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- planner_configs:
- AnytimePathShortening:
- type: geometric::AnytimePathShortening
- shortcut: true # Attempt to shortcut all new solution paths
- hybridize: true # Compute hybrid solution trajectories
- max_hybrid_paths: 24 # Number of hybrid paths generated per iteration
- num_planners: 4 # The number of default planners to use for planning
- planners: "" # A comma-separated list of planner types (e.g., "PRM,EST,RRTConnect"Optionally, planner parameters can be passed to change the default:"PRM[max_nearest_neighbors=5],EST[goal_bias=.5],RRT[range=10. goal_bias=.1]"
- SBL:
- type: geometric::SBL
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- EST:
- type: geometric::EST
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0 setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability. default: 0.05
- LBKPIECE:
- type: geometric::LBKPIECE
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- border_fraction: 0.9 # Fraction of time focused on boarder default: 0.9
- min_valid_path_fraction: 0.5 # Accept partially valid moves above fraction. default: 0.5
- BKPIECE:
- type: geometric::BKPIECE
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- border_fraction: 0.9 # Fraction of time focused on boarder default: 0.9
- failed_expansion_score_factor: 0.5 # When extending motion fails, scale score by factor. default: 0.5
- min_valid_path_fraction: 0.5 # Accept partially valid moves above fraction. default: 0.5
- KPIECE:
- type: geometric::KPIECE
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability. default: 0.05
- border_fraction: 0.9 # Fraction of time focused on boarder default: 0.9 (0.0,1.]
- failed_expansion_score_factor: 0.5 # When extending motion fails, scale score by factor. default: 0.5
- min_valid_path_fraction: 0.5 # Accept partially valid moves above fraction. default: 0.5
- RRT:
- type: geometric::RRT
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability? default: 0.05
- RRTConnect:
- type: geometric::RRTConnect
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- RRTstar:
- type: geometric::RRTstar
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability? default: 0.05
- delay_collision_checking: 1 # Stop collision checking as soon as C-free parent found. default 1
- TRRT:
- type: geometric::TRRT
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability? default: 0.05
- max_states_failed: 10 # when to start increasing temp. default: 10
- temp_change_factor: 2.0 # how much to increase or decrease temp. default: 2.0
- min_temperature: 10e-10 # lower limit of temp change. default: 10e-10
- init_temperature: 10e-6 # initial temperature. default: 10e-6
- frontier_threshold: 0.0 # dist new state to nearest neighbor to disqualify as frontier. default: 0.0 set in setup()
- frontier_node_ratio: 0.1 # 1/10, or 1 nonfrontier for every 10 frontier. default: 0.1
- k_constant: 0.0 # value used to normalize expresssion. default: 0.0 set in setup()
- PRM:
- type: geometric::PRM
- max_nearest_neighbors: 10 # use k nearest neighbors. default: 10
- PRMstar:
- type: geometric::PRMstar
- FMT:
- type: geometric::FMT
- num_samples: 1000 # number of states that the planner should sample. default: 1000
- radius_multiplier: 1.1 # multiplier used for the nearest neighbors search radius. default: 1.1
- nearest_k: 1 # use Knearest strategy. default: 1
- cache_cc: 1 # use collision checking cache. default: 1
- heuristics: 0 # activate cost to go heuristics. default: 0
- extended_fmt: 1 # activate the extended FMT*: adding new samples if planner does not finish successfully. default: 1
- BFMT:
- type: geometric::BFMT
- num_samples: 1000 # number of states that the planner should sample. default: 1000
- radius_multiplier: 1.0 # multiplier used for the nearest neighbors search radius. default: 1.0
- nearest_k: 1 # use the Knearest strategy. default: 1
- balanced: 0 # exploration strategy: balanced true expands one tree every iteration. False will select the tree with lowest maximum cost to go. default: 1
- optimality: 1 # termination strategy: optimality true finishes when the best possible path is found. Otherwise, the algorithm will finish when the first feasible path is found. default: 1
- heuristics: 1 # activates cost to go heuristics. default: 1
- cache_cc: 1 # use the collision checking cache. default: 1
- extended_fmt: 1 # Activates the extended FMT*: adding new samples if planner does not finish successfully. default: 1
- PDST:
- type: geometric::PDST
- STRIDE:
- type: geometric::STRIDE
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability. default: 0.05
- use_projected_distance: 0 # whether nearest neighbors are computed based on distances in a projection of the state rather distances in the state space itself. default: 0
- degree: 16 # desired degree of a node in the Geometric Near-neightbor Access Tree (GNAT). default: 16
- max_degree: 18 # max degree of a node in the GNAT. default: 12
- min_degree: 12 # min degree of a node in the GNAT. default: 12
- max_pts_per_leaf: 6 # max points per leaf in the GNAT. default: 6
- estimated_dimension: 0.0 # estimated dimension of the free space. default: 0.0
- min_valid_path_fraction: 0.2 # Accept partially valid moves above fraction. default: 0.2
- BiTRRT:
- type: geometric::BiTRRT
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- temp_change_factor: 0.1 # how much to increase or decrease temp. default: 0.1
- init_temperature: 100 # initial temperature. default: 100
- frontier_threshold: 0.0 # dist new state to nearest neighbor to disqualify as frontier. default: 0.0 set in setup()
- frontier_node_ratio: 0.1 # 1/10, or 1 nonfrontier for every 10 frontier. default: 0.1
- cost_threshold: 1e300 # the cost threshold. Any motion cost that is not better will not be expanded. default: inf
- LBTRRT:
- type: geometric::LBTRRT
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability. default: 0.05
- epsilon: 0.4 # optimality approximation factor. default: 0.4
- BiEST:
- type: geometric::BiEST
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- ProjEST:
- type: geometric::ProjEST
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- goal_bias: 0.05 # When close to goal select goal, with this probability. default: 0.05
- LazyPRM:
- type: geometric::LazyPRM
- range: 0.0 # Max motion added to tree. ==> maxDistance_ default: 0.0, if 0.0, set on setup()
- LazyPRMstar:
- type: geometric::LazyPRMstar
- SPARS:
- type: geometric::SPARS
- stretch_factor: 3.0 # roadmap spanner stretch factor. multiplicative upper bound on path quality. It does not make sense to make this parameter more than 3. default: 3.0
- sparse_delta_fraction: 0.25 # delta fraction for connection distance. This value represents the visibility range of sparse samples. default: 0.25
- dense_delta_fraction: 0.001 # delta fraction for interface detection. default: 0.001
- max_failures: 1000 # maximum consecutive failure limit. default: 1000
- SPARStwo:
- type: geometric::SPARStwo
- stretch_factor: 3.0 # roadmap spanner stretch factor. multiplicative upper bound on path quality. It does not make sense to make this parameter more than 3. default: 3.0
- sparse_delta_fraction: 0.25 # delta fraction for connection distance. This value represents the visibility range of sparse samples. default: 0.25
- dense_delta_fraction: 0.001 # delta fraction for interface detection. default: 0.001
- max_failures: 5000 # maximum consecutive failure limit. default: 5000
- AITstar:
- type: geometric::AITstar
- use_k_nearest: 1 # whether to use a k-nearest RGG connection model (1) or an r-disc model (0). Default: 1
- rewire_factor: 1.001 # rewire factor of the RGG. Valid values: [1.0:0.01:3.0]. Default: 1.001
- samples_per_batch: 100 # batch size. Valid values: [1:1:1000]. Default: 100
- use_graph_pruning: 1 # enable graph pruning (1) or not (0). Default: 1
- find_approximate_solutions: 0 # track approximate solutions (1) or not (0). Default: 0
- set_max_num_goals: 1 # maximum number of goals sampled from sampleable goal regions. Valid values: [1:1:1000]. Default: 1
- ABITstar:
- type: geometric::ABITstar
- use_k_nearest: 1 # whether to use a k-nearest RGG connection model (1) or an r-disc model (0). Default: 1
- rewire_factor: 1.001 # rewire factor of the RGG. Valid values: [1.0:0.01:3.0]. Default: 1.001
- samples_per_batch: 100 # batch size. Valid values: [1:1:1000]. Default: 100
- use_graph_pruning: 1 # enable graph pruning (1) or not (0). Default: 1
- prune_threshold_as_fractional_cost_change: 0.1 # fractional change in the solution cost AND problem measure necessary for pruning to occur. Default: 0.1
- delay_rewiring_to_first_solution: 0 # delay (1) or not (0) rewiring until a solution is found. Default: 0
- use_just_in_time_sampling: 0 # delay the generation of samples until they are * necessary. Only works with r-disc connection and path length minimization. Default: 0
- drop_unconnected_samples_on_prune: 0 # drop unconnected samples when pruning, regardless of their heuristic value. Default: 0
- stop_on_each_solution_improvement: 0 # stop the planner each time a solution improvement is found. Useful for debugging. Default: 0
- use_strict_queue_ordering: 0 # sort edges in the queue at the end of the batch (0) or after each rewiring (1). Default: 0
- find_approximate_solutions: 0 # track approximate solutions (1) or not (0). Default: 0
- initial_inflation_factor: 1000000 # inflation factor for the initial search. Valid values: [1.0:0.01:1000000.0]. Default: 1000000
- inflation_scaling_parameter: 10 # scaling parameter for the inflation factor update policy. Valid values: [1.0:0.01:1000000.0]. Default: 0
- truncation_scaling_parameter: 5.0 # scaling parameter for the truncation factor update policy. Valid values: [1.0:0.01:1000000.0]. Default: 0
- BITstar:
- type: geometric::BITstar
- use_k_nearest: 1 # whether to use a k-nearest RGG connection model (1) or an r-disc model (0). Default: 1
- rewire_factor: 1.001 # rewire factor of the RGG. Valid values: [1.0:0.01:3.0]. Default: 1.001
- samples_per_batch: 100 # batch size. Valid values: [1:1:1000]. Default: 100
- use_graph_pruning: 1 # enable graph pruning (1) or not (0). Default: 1
- prune_threshold_as_fractional_cost_change: 0.1 # fractional change in the solution cost AND problem measure necessary for pruning to occur. Default: 0.1
- delay_rewiring_to_first_solution: 0 # delay (1) or not (0) rewiring until a solution is found. Default: 0
- use_just_in_time_sampling: 0 # delay the generation of samples until they are * necessary. Only works with r-disc connection and path length minimization. Default: 0
- drop_unconnected_samples_on_prune: 0 # drop unconnected samples when pruning, regardless of their heuristic value. Default: 0
- stop_on_each_solution_improvement: 0 # stop the planner each time a solution improvement is found. Useful for debugging. Default: 0
- use_strict_queue_ordering: 0 # sort edges in the queue at the end of the batch (0) or after each rewiring (1). Default: 0
- find_approximate_solutions: 0 # track approximate solutions (1) or not (0). Default: 0
- manipulator:
- default_planner_config: RRTConnect
- planner_configs:
- - AnytimePathShortening
- - SBL
- - EST
- - LBKPIECE
- - BKPIECE
- - KPIECE
- - RRT
- - RRTConnect
- - RRTstar
- - TRRT
- - PRM
- - PRMstar
- - FMT
- - BFMT
- - PDST
- - STRIDE
- - BiTRRT
- - LBTRRT
- - BiEST
- - ProjEST
- - LazyPRM
- - LazyPRMstar
- - SPARS
- - SPARStwo
- - AITstar
- - ABITstar
- - BITstar
|