123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- from typing import Tuple
- import torch
- import torch.nn.functional as F
- def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
- """
- Selects the closest conditioning frames to a given frame index.
- Args:
- frame_idx (int): Current frame index.
- cond_frame_outputs (Dict[int, Any]): Dictionary of conditioning frame outputs keyed by frame indices.
- max_cond_frame_num (int): Maximum number of conditioning frames to select.
- Returns:
- (Tuple[Dict[int, Any], Dict[int, Any]]): A tuple containing two dictionaries:
- - selected_outputs: Selected items from cond_frame_outputs.
- - unselected_outputs: Items not selected from cond_frame_outputs.
- Examples:
- >>> frame_idx = 5
- >>> cond_frame_outputs = {1: "a", 3: "b", 7: "c", 9: "d"}
- >>> max_cond_frame_num = 2
- >>> selected, unselected = select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num)
- >>> print(selected)
- {3: 'b', 7: 'c'}
- >>> print(unselected)
- {1: 'a', 9: 'd'}
- """
- if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
- selected_outputs = cond_frame_outputs
- unselected_outputs = {}
- else:
- assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
- selected_outputs = {}
- # the closest conditioning frame before `frame_idx` (if any)
- idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
- if idx_before is not None:
- selected_outputs[idx_before] = cond_frame_outputs[idx_before]
- # the closest conditioning frame after `frame_idx` (if any)
- idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
- if idx_after is not None:
- selected_outputs[idx_after] = cond_frame_outputs[idx_after]
- # add other temporally closest conditioning frames until reaching a total
- # of `max_cond_frame_num` conditioning frames.
- num_remain = max_cond_frame_num - len(selected_outputs)
- inds_remain = sorted(
- (t for t in cond_frame_outputs if t not in selected_outputs),
- key=lambda x: abs(x - frame_idx),
- )[:num_remain]
- selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
- unselected_outputs = {t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs}
- return selected_outputs, unselected_outputs
- def get_1d_sine_pe(pos_inds, dim, temperature=10000):
- """Generates 1D sinusoidal positional embeddings for given positions and dimensions."""
- pe_dim = dim // 2
- dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
- dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
- pos_embed = pos_inds.unsqueeze(-1) / dim_t
- pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
- return pos_embed
- def init_t_xy(end_x: int, end_y: int):
- """Initializes 1D and 2D coordinate tensors for a grid of specified dimensions."""
- t = torch.arange(end_x * end_y, dtype=torch.float32)
- t_x = (t % end_x).float()
- t_y = torch.div(t, end_x, rounding_mode="floor").float()
- return t_x, t_y
- def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
- """Computes axial complex exponential positional encodings for 2D spatial positions in a grid."""
- freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
- freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
- t_x, t_y = init_t_xy(end_x, end_y)
- freqs_x = torch.outer(t_x, freqs_x)
- freqs_y = torch.outer(t_y, freqs_y)
- freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
- freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
- return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
- def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
- """Reshapes frequency tensor for broadcasting with input tensor, ensuring dimensional compatibility."""
- ndim = x.ndim
- assert 0 <= 1 < ndim
- assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
- shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
- return freqs_cis.view(*shape)
- def apply_rotary_enc(
- xq: torch.Tensor,
- xk: torch.Tensor,
- freqs_cis: torch.Tensor,
- repeat_freqs_k: bool = False,
- ):
- """Applies rotary positional encoding to query and key tensors using complex-valued frequency components."""
- xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
- xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None
- freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
- xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
- if xk_ is None:
- # no keys to rotate, due to dropout
- return xq_out.type_as(xq).to(xq.device), xk
- # repeat freqs along seq_len dim to match k seq_len
- if repeat_freqs_k:
- r = xk_.shape[-2] // xq_.shape[-2]
- freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
- xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
- return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
- def window_partition(x, window_size):
- """
- Partitions input tensor into non-overlapping windows with padding if needed.
- Args:
- x (torch.Tensor): Input tensor with shape (B, H, W, C).
- window_size (int): Size of each window.
- Returns:
- (Tuple[torch.Tensor, Tuple[int, int]]): A tuple containing:
- - windows (torch.Tensor): Partitioned windows with shape (B * num_windows, window_size, window_size, C).
- - (Hp, Wp) (Tuple[int, int]): Padded height and width before partition.
- Examples:
- >>> x = torch.randn(1, 16, 16, 3)
- >>> windows, (Hp, Wp) = window_partition(x, window_size=4)
- >>> print(windows.shape, Hp, Wp)
- torch.Size([16, 4, 4, 3]) 16 16
- """
- B, H, W, C = x.shape
- pad_h = (window_size - H % window_size) % window_size
- pad_w = (window_size - W % window_size) % window_size
- if pad_h > 0 or pad_w > 0:
- x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
- Hp, Wp = H + pad_h, W + pad_w
- x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows, (Hp, Wp)
- def window_unpartition(windows, window_size, pad_hw, hw):
- """
- Unpartitions windowed sequences into original sequences and removes padding.
- This function reverses the windowing process, reconstructing the original input from windowed segments
- and removing any padding that was added during the windowing process.
- Args:
- windows (torch.Tensor): Input tensor of windowed sequences with shape (B * num_windows, window_size,
- window_size, C), where B is the batch size, num_windows is the number of windows, window_size is
- the size of each window, and C is the number of channels.
- window_size (int): Size of each window.
- pad_hw (Tuple[int, int]): Padded height and width (Hp, Wp) of the input before windowing.
- hw (Tuple[int, int]): Original height and width (H, W) of the input before padding and windowing.
- Returns:
- (torch.Tensor): Unpartitioned sequences with shape (B, H, W, C), where B is the batch size, H and W
- are the original height and width, and C is the number of channels.
- Examples:
- >>> windows = torch.rand(32, 8, 8, 64) # 32 windows of size 8x8 with 64 channels
- >>> pad_hw = (16, 16) # Padded height and width
- >>> hw = (15, 14) # Original height and width
- >>> x = window_unpartition(windows, window_size=8, pad_hw=pad_hw, hw=hw)
- >>> print(x.shape)
- torch.Size([1, 15, 14, 64])
- """
- Hp, Wp = pad_hw
- H, W = hw
- B = windows.shape[0] // (Hp * Wp // window_size // window_size)
- x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
- if Hp > H or Wp > W:
- x = x[:, :H, :W, :].contiguous()
- return x
- def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
- """
- Extracts relative positional embeddings based on query and key sizes.
- Args:
- q_size (int): Size of the query.
- k_size (int): Size of the key.
- rel_pos (torch.Tensor): Relative position embeddings with shape (L, C), where L is the maximum relative
- distance and C is the embedding dimension.
- Returns:
- (torch.Tensor): Extracted positional embeddings according to relative positions, with shape (q_size,
- k_size, C).
- Examples:
- >>> q_size, k_size = 8, 16
- >>> rel_pos = torch.randn(31, 64) # 31 = 2 * max(8, 16) - 1
- >>> extracted_pos = get_rel_pos(q_size, k_size, rel_pos)
- >>> print(extracted_pos.shape)
- torch.Size([8, 16, 64])
- """
- max_rel_dist = int(2 * max(q_size, k_size) - 1)
- # Interpolate rel pos if needed.
- if rel_pos.shape[0] != max_rel_dist:
- # Interpolate rel pos.
- rel_pos_resized = F.interpolate(
- rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
- size=max_rel_dist,
- mode="linear",
- )
- rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
- else:
- rel_pos_resized = rel_pos
- # Scale the coords with short length if shapes for q and k are different.
- q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
- k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
- relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
- return rel_pos_resized[relative_coords.long()]
- def add_decomposed_rel_pos(
- attn: torch.Tensor,
- q: torch.Tensor,
- rel_pos_h: torch.Tensor,
- rel_pos_w: torch.Tensor,
- q_size: Tuple[int, int],
- k_size: Tuple[int, int],
- ) -> torch.Tensor:
- """
- Adds decomposed Relative Positional Embeddings to the attention map.
- This function calculates and applies decomposed Relative Positional Embeddings as described in the MVITv2
- paper. It enhances the attention mechanism by incorporating spatial relationships between query and key
- positions.
- Args:
- attn (torch.Tensor): Attention map with shape (B, q_h * q_w, k_h * k_w).
- q (torch.Tensor): Query tensor in the attention layer with shape (B, q_h * q_w, C).
- rel_pos_h (torch.Tensor): Relative position embeddings for height axis with shape (Lh, C).
- rel_pos_w (torch.Tensor): Relative position embeddings for width axis with shape (Lw, C).
- q_size (Tuple[int, int]): Spatial sequence size of query q as (q_h, q_w).
- k_size (Tuple[int, int]): Spatial sequence size of key k as (k_h, k_w).
- Returns:
- (torch.Tensor): Updated attention map with added relative positional embeddings, shape
- (B, q_h * q_w, k_h * k_w).
- Examples:
- >>> B, C, q_h, q_w, k_h, k_w = 1, 64, 8, 8, 8, 8
- >>> attn = torch.rand(B, q_h * q_w, k_h * k_w)
- >>> q = torch.rand(B, q_h * q_w, C)
- >>> rel_pos_h = torch.rand(2 * max(q_h, k_h) - 1, C)
- >>> rel_pos_w = torch.rand(2 * max(q_w, k_w) - 1, C)
- >>> q_size, k_size = (q_h, q_w), (k_h, k_w)
- >>> updated_attn = add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size)
- >>> print(updated_attn.shape)
- torch.Size([1, 64, 64])
- References:
- https://github.com/facebookresearch/mvit/blob/main/mvit/models/attention.py
- """
- q_h, q_w = q_size
- k_h, k_w = k_size
- Rh = get_rel_pos(q_h, k_h, rel_pos_h)
- Rw = get_rel_pos(q_w, k_w, rel_pos_w)
- B, _, dim = q.shape
- r_q = q.reshape(B, q_h, q_w, dim)
- rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
- rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
- attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
- B, q_h * q_w, k_h * k_w
- )
- return attn
|