123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- from time import time
- import numpy as np
- from ultralytics.solutions.solutions import BaseSolution
- from ultralytics.utils.plotting import Annotator, colors
- class SpeedEstimator(BaseSolution):
- """
- A class to estimate the speed of objects in a real-time video stream based on their tracks.
- This class extends the BaseSolution class and provides functionality for estimating object speeds using
- tracking data in video streams.
- Attributes:
- spd (Dict[int, float]): Dictionary storing speed data for tracked objects.
- trkd_ids (List[int]): List of tracked object IDs that have already been speed-estimated.
- trk_pt (Dict[int, float]): Dictionary storing previous timestamps for tracked objects.
- trk_pp (Dict[int, Tuple[float, float]]): Dictionary storing previous positions for tracked objects.
- annotator (Annotator): Annotator object for drawing on images.
- region (List[Tuple[int, int]]): List of points defining the speed estimation region.
- track_line (List[Tuple[float, float]]): List of points representing the object's track.
- r_s (LineString): LineString object representing the speed estimation region.
- Methods:
- initialize_region: Initializes the speed estimation region.
- estimate_speed: Estimates the speed of objects based on tracking data.
- store_tracking_history: Stores the tracking history for an object.
- extract_tracks: Extracts tracks from the current frame.
- display_output: Displays the output with annotations.
- Examples:
- >>> estimator = SpeedEstimator()
- >>> frame = cv2.imread("frame.jpg")
- >>> processed_frame = estimator.estimate_speed(frame)
- >>> cv2.imshow("Speed Estimation", processed_frame)
- """
- def __init__(self, **kwargs):
- """Initializes the SpeedEstimator object with speed estimation parameters and data structures."""
- super().__init__(**kwargs)
- self.initialize_region() # Initialize speed region
- self.spd = {} # set for speed data
- self.trkd_ids = [] # list for already speed_estimated and tracked ID's
- self.trk_pt = {} # set for tracks previous time
- self.trk_pp = {} # set for tracks previous point
- def estimate_speed(self, im0):
- """
- Estimates the speed of objects based on tracking data.
- Args:
- im0 (np.ndarray): Input image for processing. Shape is typically (H, W, C) for RGB images.
- Returns:
- (np.ndarray): Processed image with speed estimations and annotations.
- Examples:
- >>> estimator = SpeedEstimator()
- >>> image = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
- >>> processed_image = estimator.estimate_speed(image)
- """
- self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
- self.extract_tracks(im0) # Extract tracks
- self.annotator.draw_region(
- reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
- ) # Draw region
- for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
- self.store_tracking_history(track_id, box) # Store track history
- # Check if track_id is already in self.trk_pp or trk_pt initialize if not
- if track_id not in self.trk_pt:
- self.trk_pt[track_id] = 0
- if track_id not in self.trk_pp:
- self.trk_pp[track_id] = self.track_line[-1]
- speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)]
- self.annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box
- # Draw tracks of objects
- self.annotator.draw_centroid_and_tracks(
- self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
- )
- # Calculate object speed and direction based on region intersection
- if self.LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.r_s):
- direction = "known"
- else:
- direction = "unknown"
- # Perform speed calculation and tracking updates if direction is valid
- if direction == "known" and track_id not in self.trkd_ids:
- self.trkd_ids.append(track_id)
- time_difference = time() - self.trk_pt[track_id]
- if time_difference > 0:
- self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference
- self.trk_pt[track_id] = time()
- self.trk_pp[track_id] = self.track_line[-1]
- self.display_output(im0) # display output with base class function
- return im0 # return output image for more usage
|