coco-pose.yaml 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. # COCO 2017 Keypoints dataset https://cocodataset.org by Microsoft
  3. # Documentation: https://docs.ultralytics.com/datasets/pose/coco/
  4. # Example usage: yolo train data=coco-pose.yaml
  5. # parent
  6. # ├── ultralytics
  7. # └── datasets
  8. # └── coco-pose ← downloads here (20.1 GB)
  9. # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
  10. path: ../datasets/coco-pose # dataset root dir
  11. train: train2017.txt # train images (relative to 'path') 56599 images
  12. val: val2017.txt # val images (relative to 'path') 2346 images
  13. test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
  14. # Keypoints
  15. kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
  16. flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
  17. # Classes
  18. names:
  19. 0: person
  20. # Download script/URL (optional)
  21. download: |
  22. from ultralytics.utils.downloads import download
  23. from pathlib import Path
  24. # Download labels
  25. dir = Path(yaml['path']) # dataset root dir
  26. url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
  27. urls = [url + 'coco2017labels-pose.zip'] # labels
  28. download(urls, dir=dir.parent)
  29. # Download data
  30. urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
  31. 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
  32. 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
  33. download(urls, dir=dir / 'images', threads=3)