123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import argparse
- import cv2
- import numpy as np
- import onnxruntime as ort
- from ultralytics.utils import ASSETS, yaml_load
- from ultralytics.utils.checks import check_yaml
- from ultralytics.utils.plotting import Colors
- class YOLOv8Seg:
- """YOLOv8 segmentation model."""
- def __init__(self, onnx_model):
- """
- Initialization.
- Args:
- onnx_model (str): Path to the ONNX model.
- """
- # Build Ort session
- self.session = ort.InferenceSession(
- onnx_model,
- providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
- if ort.get_device() == "GPU"
- else ["CPUExecutionProvider"],
- )
- # Numpy dtype: support both FP32 and FP16 onnx model
- self.ndtype = np.half if self.session.get_inputs()[0].type == "tensor(float16)" else np.single
- # Get model width and height(YOLOv8-seg only has one input)
- self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:]
- # Load COCO class names
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
- # Create color palette
- self.color_palette = Colors()
- def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):
- """
- The whole pipeline: pre-process -> inference -> post-process.
- Args:
- im0 (Numpy.ndarray): original input image.
- conf_threshold (float): confidence threshold for filtering predictions.
- iou_threshold (float): iou threshold for NMS.
- nm (int): the number of masks.
- Returns:
- boxes (List): list of bounding boxes.
- segments (List): list of segments.
- masks (np.ndarray): [N, H, W], output masks.
- """
- # Pre-process
- im, ratio, (pad_w, pad_h) = self.preprocess(im0)
- # Ort inference
- preds = self.session.run(None, {self.session.get_inputs()[0].name: im})
- # Post-process
- boxes, segments, masks = self.postprocess(
- preds,
- im0=im0,
- ratio=ratio,
- pad_w=pad_w,
- pad_h=pad_h,
- conf_threshold=conf_threshold,
- iou_threshold=iou_threshold,
- nm=nm,
- )
- return boxes, segments, masks
- def preprocess(self, img):
- """
- Pre-processes the input image.
- Args:
- img (Numpy.ndarray): image about to be processed.
- Returns:
- img_process (Numpy.ndarray): image preprocessed for inference.
- ratio (tuple): width, height ratios in letterbox.
- pad_w (float): width padding in letterbox.
- pad_h (float): height padding in letterbox.
- """
- # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
- shape = img.shape[:2] # original image shape
- new_shape = (self.model_height, self.model_width)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- ratio = r, r
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
- left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
- # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
- img = np.ascontiguousarray(np.einsum("HWC->CHW", img)[::-1], dtype=self.ndtype) / 255.0
- img_process = img[None] if len(img.shape) == 3 else img
- return img_process, ratio, (pad_w, pad_h)
- def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):
- """
- Post-process the prediction.
- Args:
- preds (Numpy.ndarray): predictions come from ort.session.run().
- im0 (Numpy.ndarray): [h, w, c] original input image.
- ratio (tuple): width, height ratios in letterbox.
- pad_w (float): width padding in letterbox.
- pad_h (float): height padding in letterbox.
- conf_threshold (float): conf threshold.
- iou_threshold (float): iou threshold.
- nm (int): the number of masks.
- Returns:
- boxes (List): list of bounding boxes.
- segments (List): list of segments.
- masks (np.ndarray): [N, H, W], output masks.
- """
- x, protos = preds[0], preds[1] # Two outputs: predictions and protos
- # Transpose dim 1: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm)
- x = np.einsum("bcn->bnc", x)
- # Predictions filtering by conf-threshold
- x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold]
- # Create a new matrix which merge these(box, score, cls, nm) into one
- # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
- x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]]
- # NMS filtering
- x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
- # Decode and return
- if len(x) > 0:
- # Bounding boxes format change: cxcywh -> xyxy
- x[..., [0, 1]] -= x[..., [2, 3]] / 2
- x[..., [2, 3]] += x[..., [0, 1]]
- # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
- x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
- x[..., :4] /= min(ratio)
- # Bounding boxes boundary clamp
- x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
- x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])
- # Process masks
- masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)
- # Masks -> Segments(contours)
- segments = self.masks2segments(masks)
- return x[..., :6], segments, masks # boxes, segments, masks
- else:
- return [], [], []
- @staticmethod
- def masks2segments(masks):
- """
- Takes a list of masks(n,h,w) and returns a list of segments(n,xy), from
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160).
- Returns:
- segments (List): list of segment masks.
- """
- segments = []
- for x in masks.astype("uint8"):
- c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0] # CHAIN_APPROX_SIMPLE
- if c:
- c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
- else:
- c = np.zeros((0, 2)) # no segments found
- segments.append(c.astype("float32"))
- return segments
- @staticmethod
- def crop_mask(masks, boxes):
- """
- Takes a mask and a bounding box, and returns a mask that is cropped to the bounding box, from
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- masks (Numpy.ndarray): [n, h, w] tensor of masks.
- boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form.
- Returns:
- (Numpy.ndarray): The masks are being cropped to the bounding box.
- """
- n, h, w = masks.shape
- x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)
- r = np.arange(w, dtype=x1.dtype)[None, None, :]
- c = np.arange(h, dtype=x1.dtype)[None, :, None]
- return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
- def process_mask(self, protos, masks_in, bboxes, im0_shape):
- """
- Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
- quality but is slower, from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- protos (numpy.ndarray): [mask_dim, mask_h, mask_w].
- masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms.
- bboxes (numpy.ndarray): bboxes re-scaled to original image shape.
- im0_shape (tuple): the size of the input image (h,w,c).
- Returns:
- (numpy.ndarray): The upsampled masks.
- """
- c, mh, mw = protos.shape
- masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0) # HWN
- masks = np.ascontiguousarray(masks)
- masks = self.scale_mask(masks, im0_shape) # re-scale mask from P3 shape to original input image shape
- masks = np.einsum("HWN -> NHW", masks) # HWN -> NHW
- masks = self.crop_mask(masks, bboxes)
- return np.greater(masks, 0.5)
- @staticmethod
- def scale_mask(masks, im0_shape, ratio_pad=None):
- """
- Takes a mask, and resizes it to the original image size, from
- https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
- Args:
- masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
- im0_shape (tuple): the original image shape.
- ratio_pad (tuple): the ratio of the padding to the original image.
- Returns:
- masks (np.ndarray): The masks that are being returned.
- """
- im1_shape = masks.shape[:2]
- if ratio_pad is None: # calculate from im0_shape
- gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
- pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
- else:
- pad = ratio_pad[1]
- # Calculate tlbr of mask
- top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)) # y, x
- bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))
- if len(masks.shape) < 2:
- raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
- masks = masks[top:bottom, left:right]
- masks = cv2.resize(
- masks, (im0_shape[1], im0_shape[0]), interpolation=cv2.INTER_LINEAR
- ) # INTER_CUBIC would be better
- if len(masks.shape) == 2:
- masks = masks[:, :, None]
- return masks
- def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):
- """
- Draw and visualize results.
- Args:
- im (np.ndarray): original image, shape [h, w, c].
- bboxes (numpy.ndarray): [n, 4], n is number of bboxes.
- segments (List): list of segment masks.
- vis (bool): imshow using OpenCV.
- save (bool): save image annotated.
- Returns:
- None
- """
- # Draw rectangles and polygons
- im_canvas = im.copy()
- for (*box, conf, cls_), segment in zip(bboxes, segments):
- # draw contour and fill mask
- cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2) # white borderline
- cv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True))
- # draw bbox rectangle
- cv2.rectangle(
- im,
- (int(box[0]), int(box[1])),
- (int(box[2]), int(box[3])),
- self.color_palette(int(cls_), bgr=True),
- 1,
- cv2.LINE_AA,
- )
- cv2.putText(
- im,
- f"{self.classes[cls_]}: {conf:.3f}",
- (int(box[0]), int(box[1] - 9)),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.7,
- self.color_palette(int(cls_), bgr=True),
- 2,
- cv2.LINE_AA,
- )
- # Mix image
- im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)
- # Show image
- if vis:
- cv2.imshow("demo", im)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
- # Save image
- if save:
- cv2.imwrite("demo.jpg", im)
- if __name__ == "__main__":
- # Create an argument parser to handle command-line arguments
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, required=True, help="Path to ONNX model")
- parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
- parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
- parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
- args = parser.parse_args()
- # Build model
- model = YOLOv8Seg(args.model)
- # Read image by OpenCV
- img = cv2.imread(args.source)
- # Inference
- boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou)
- # Draw bboxes and polygons
- if len(boxes) > 0:
- model.draw_and_visualize(img, boxes, segments, vis=False, save=True)
|