123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- """Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch."""
- import os
- from copy import deepcopy
- import numpy as np
- import torch
- from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr
- from ultralytics.utils.torch_utils import autocast, profile
- def check_train_batch_size(model, imgsz=640, amp=True, batch=-1, max_num_obj=1):
- """
- Compute optimal YOLO training batch size using the autobatch() function.
- Args:
- model (torch.nn.Module): YOLO model to check batch size for.
- imgsz (int, optional): Image size used for training.
- amp (bool, optional): Use automatic mixed precision if True.
- batch (float, optional): Fraction of GPU memory to use. If -1, use default.
- max_num_obj (int, optional): The maximum number of objects from dataset.
- Returns:
- (int): Optimal batch size computed using the autobatch() function.
- Note:
- If 0.0 < batch < 1.0, it's used as the fraction of GPU memory to use.
- Otherwise, a default fraction of 0.6 is used.
- """
- with autocast(enabled=amp):
- return autobatch(
- deepcopy(model).train(), imgsz, fraction=batch if 0.0 < batch < 1.0 else 0.6, max_num_obj=max_num_obj
- )
- def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch, max_num_obj=1):
- """
- Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
- Args:
- model (torch.nn.module): YOLO model to compute batch size for.
- imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640.
- fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60.
- batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16.
- max_num_obj (int, optional): The maximum number of objects from dataset.
- Returns:
- (int): The optimal batch size.
- """
- # Check device
- prefix = colorstr("AutoBatch: ")
- LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz} at {fraction * 100}% CUDA memory utilization.")
- device = next(model.parameters()).device # get model device
- if device.type in {"cpu", "mps"}:
- LOGGER.info(f"{prefix} ⚠️ intended for CUDA devices, using default batch-size {batch_size}")
- return batch_size
- if torch.backends.cudnn.benchmark:
- LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}")
- return batch_size
- # Inspect CUDA memory
- gb = 1 << 30 # bytes to GiB (1024 ** 3)
- d = f"CUDA:{os.getenv('CUDA_VISIBLE_DEVICES', '0').strip()[0]}" # 'CUDA:0'
- properties = torch.cuda.get_device_properties(device) # device properties
- t = properties.total_memory / gb # GiB total
- r = torch.cuda.memory_reserved(device) / gb # GiB reserved
- a = torch.cuda.memory_allocated(device) / gb # GiB allocated
- f = t - (r + a) # GiB free
- LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free")
- # Profile batch sizes
- batch_sizes = [1, 2, 4, 8, 16] if t < 16 else [1, 2, 4, 8, 16, 32, 64]
- try:
- img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
- results = profile(img, model, n=1, device=device, max_num_obj=max_num_obj)
- # Fit a solution
- xy = [
- [x, y[2]]
- for i, (x, y) in enumerate(zip(batch_sizes, results))
- if y # valid result
- and isinstance(y[2], (int, float)) # is numeric
- and 0 < y[2] < t # between 0 and GPU limit
- and (i == 0 or not results[i - 1] or y[2] > results[i - 1][2]) # first item or increasing memory
- ]
- fit_x, fit_y = zip(*xy) if xy else ([], [])
- p = np.polyfit(np.log(fit_x), np.log(fit_y), deg=1) # first-degree polynomial fit in log space
- b = int(round(np.exp((np.log(f * fraction) - p[1]) / p[0]))) # y intercept (optimal batch size)
- if None in results: # some sizes failed
- i = results.index(None) # first fail index
- if b >= batch_sizes[i]: # y intercept above failure point
- b = batch_sizes[max(i - 1, 0)] # select prior safe point
- if b < 1 or b > 1024: # b outside of safe range
- LOGGER.info(f"{prefix}WARNING ⚠️ batch={b} outside safe range, using default batch-size {batch_size}.")
- b = batch_size
- fraction = (np.exp(np.polyval(p, np.log(b))) + r + a) / t # predicted fraction
- LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅")
- return b
- except Exception as e:
- LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.")
- return batch_size
- finally:
- torch.cuda.empty_cache()
|