track.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. from functools import partial
  3. from pathlib import Path
  4. import torch
  5. from ultralytics.utils import IterableSimpleNamespace, yaml_load
  6. from ultralytics.utils.checks import check_yaml
  7. from .bot_sort import BOTSORT
  8. from .byte_tracker import BYTETracker
  9. # A mapping of tracker types to corresponding tracker classes
  10. TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}
  11. def on_predict_start(predictor: object, persist: bool = False) -> None:
  12. """
  13. Initialize trackers for object tracking during prediction.
  14. Args:
  15. predictor (object): The predictor object to initialize trackers for.
  16. persist (bool): Whether to persist the trackers if they already exist.
  17. Raises:
  18. AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'.
  19. Examples:
  20. Initialize trackers for a predictor object:
  21. >>> predictor = SomePredictorClass()
  22. >>> on_predict_start(predictor, persist=True)
  23. """
  24. if hasattr(predictor, "trackers") and persist:
  25. return
  26. tracker = check_yaml(predictor.args.tracker)
  27. cfg = IterableSimpleNamespace(**yaml_load(tracker))
  28. if cfg.tracker_type not in {"bytetrack", "botsort"}:
  29. raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
  30. trackers = []
  31. for _ in range(predictor.dataset.bs):
  32. tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
  33. trackers.append(tracker)
  34. if predictor.dataset.mode != "stream": # only need one tracker for other modes.
  35. break
  36. predictor.trackers = trackers
  37. predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
  38. def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
  39. """
  40. Postprocess detected boxes and update with object tracking.
  41. Args:
  42. predictor (object): The predictor object containing the predictions.
  43. persist (bool): Whether to persist the trackers if they already exist.
  44. Examples:
  45. Postprocess predictions and update with tracking
  46. >>> predictor = YourPredictorClass()
  47. >>> on_predict_postprocess_end(predictor, persist=True)
  48. """
  49. path, im0s = predictor.batch[:2]
  50. is_obb = predictor.args.task == "obb"
  51. is_stream = predictor.dataset.mode == "stream"
  52. for i in range(len(im0s)):
  53. tracker = predictor.trackers[i if is_stream else 0]
  54. vid_path = predictor.save_dir / Path(path[i]).name
  55. if not persist and predictor.vid_path[i if is_stream else 0] != vid_path:
  56. tracker.reset()
  57. predictor.vid_path[i if is_stream else 0] = vid_path
  58. det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy()
  59. if len(det) == 0:
  60. continue
  61. tracks = tracker.update(det, im0s[i])
  62. if len(tracks) == 0:
  63. continue
  64. idx = tracks[:, -1].astype(int)
  65. predictor.results[i] = predictor.results[i][idx]
  66. update_args = {"obb" if is_obb else "boxes": torch.as_tensor(tracks[:, :-1])}
  67. predictor.results[i].update(**update_args)
  68. def register_tracker(model: object, persist: bool) -> None:
  69. """
  70. Register tracking callbacks to the model for object tracking during prediction.
  71. Args:
  72. model (object): The model object to register tracking callbacks for.
  73. persist (bool): Whether to persist the trackers if they already exist.
  74. Examples:
  75. Register tracking callbacks to a YOLO model
  76. >>> model = YOLOModel()
  77. >>> register_tracker(model, persist=True)
  78. """
  79. model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
  80. model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))