1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import cv2
- import numpy as np
- from ultralytics.solutions.solutions import BaseSolution
- from ultralytics.utils.plotting import Annotator, colors
- class TrackZone(BaseSolution):
- """
- A class to manage region-based object tracking in a video stream.
- This class extends the BaseSolution class and provides functionality for tracking objects within a specific region
- defined by a polygonal area. Objects outside the region are excluded from tracking. It supports dynamic initialization
- of the region, allowing either a default region or a user-specified polygon.
- Attributes:
- region (ndarray): The polygonal region for tracking, represented as a convex hull.
- Methods:
- trackzone: Processes each frame of the video, applying region-based tracking.
- Examples:
- >>> tracker = TrackZone()
- >>> frame = cv2.imread("frame.jpg")
- >>> processed_frame = tracker.trackzone(frame)
- >>> cv2.imshow("Tracked Frame", processed_frame)
- """
- def __init__(self, **kwargs):
- """Initializes the TrackZone class for tracking objects within a defined region in video streams."""
- super().__init__(**kwargs)
- default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)]
- self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32))
- def trackzone(self, im0):
- """
- Processes the input frame to track objects within a defined region.
- This method initializes the annotator, creates a mask for the specified region, extracts tracks
- only from the masked area, and updates tracking information. Objects outside the region are ignored.
- Args:
- im0 (numpy.ndarray): The input image or frame to be processed.
- Returns:
- (numpy.ndarray): The processed image with tracking id and bounding boxes annotations.
- Examples:
- >>> tracker = TrackZone()
- >>> frame = cv2.imread("path/to/image.jpg")
- >>> tracker.trackzone(frame)
- """
- self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
- # Create a mask for the region and extract tracks from the masked image
- masked_frame = cv2.bitwise_and(im0, im0, mask=cv2.fillPoly(np.zeros_like(im0[:, :, 0]), [self.region], 255))
- self.extract_tracks(masked_frame)
- cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2)
- # Iterate over boxes, track ids, classes indexes list and draw bounding boxes
- for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
- self.annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True))
- self.display_output(im0) # display output with base class function
- return im0 # return output image for more usage
|