123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import torch
- from ultralytics.data.augment import LetterBox
- from ultralytics.engine.predictor import BasePredictor
- from ultralytics.engine.results import Results
- from ultralytics.utils import ops
- class RTDETRPredictor(BasePredictor):
- """
- RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions using
- Baidu's RT-DETR model.
- This class leverages the power of Vision Transformers to provide real-time object detection while maintaining
- high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection.
- Example:
- ```python
- from ultralytics.utils import ASSETS
- from ultralytics.models.rtdetr import RTDETRPredictor
- args = dict(model="rtdetr-l.pt", source=ASSETS)
- predictor = RTDETRPredictor(overrides=args)
- predictor.predict_cli()
- ```
- Attributes:
- imgsz (int): Image size for inference (must be square and scale-filled).
- args (dict): Argument overrides for the predictor.
- """
- def postprocess(self, preds, img, orig_imgs):
- """
- Postprocess the raw predictions from the model to generate bounding boxes and confidence scores.
- The method filters detections based on confidence and class if specified in `self.args`.
- Args:
- preds (list): List of [predictions, extra] from the model.
- img (torch.Tensor): Processed input images.
- orig_imgs (list or torch.Tensor): Original, unprocessed images.
- Returns:
- (list[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores,
- and class labels.
- """
- if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
- preds = [preds, None]
- nd = preds[0].shape[-1]
- bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
- if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
- orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
- results = []
- for bbox, score, orig_img, img_path in zip(bboxes, scores, orig_imgs, self.batch[0]): # (300, 4)
- bbox = ops.xywh2xyxy(bbox)
- max_score, cls = score.max(-1, keepdim=True) # (300, 1)
- idx = max_score.squeeze(-1) > self.args.conf # (300, )
- if self.args.classes is not None:
- idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
- pred = torch.cat([bbox, max_score, cls], dim=-1)[idx] # filter
- oh, ow = orig_img.shape[:2]
- pred[..., [0, 2]] *= ow
- pred[..., [1, 3]] *= oh
- results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
- return results
- def pre_transform(self, im):
- """
- Pre-transforms the input images before feeding them into the model for inference. The input images are
- letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scaleFilled.
- Args:
- im (list[np.ndarray] |torch.Tensor): Input images of shape (N,3,h,w) for tensor, [(h,w,3) x N] for list.
- Returns:
- (list): List of pre-transformed images ready for model inference.
- """
- letterbox = LetterBox(self.imgsz, auto=False, scaleFill=True)
- return [letterbox(image=x) for x in im]
|