yolov3.yaml 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. # Ultralytics YOLOv3 object detection model with P3/8 - P5/32 outputs
  3. # Model docs: https://docs.ultralytics.com/models/yolov3
  4. # Task docs: https://docs.ultralytics.com/tasks/detect
  5. # Parameters
  6. nc: 80 # number of classes
  7. depth_multiple: 1.0 # model depth multiple
  8. width_multiple: 1.0 # layer channel multiple
  9. # darknet53 backbone
  10. backbone:
  11. # [from, number, module, args]
  12. - [-1, 1, Conv, [32, 3, 1]] # 0
  13. - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
  14. - [-1, 1, Bottleneck, [64]]
  15. - [-1, 1, Conv, [128, 3, 2]] # 3-P2/4
  16. - [-1, 2, Bottleneck, [128]]
  17. - [-1, 1, Conv, [256, 3, 2]] # 5-P3/8
  18. - [-1, 8, Bottleneck, [256]]
  19. - [-1, 1, Conv, [512, 3, 2]] # 7-P4/16
  20. - [-1, 8, Bottleneck, [512]]
  21. - [-1, 1, Conv, [1024, 3, 2]] # 9-P5/32
  22. - [-1, 4, Bottleneck, [1024]] # 10
  23. # YOLOv3 head
  24. head:
  25. - [-1, 1, Bottleneck, [1024, False]]
  26. - [-1, 1, Conv, [512, 1, 1]]
  27. - [-1, 1, Conv, [1024, 3, 1]]
  28. - [-1, 1, Conv, [512, 1, 1]]
  29. - [-1, 1, Conv, [1024, 3, 1]] # 15 (P5/32-large)
  30. - [-2, 1, Conv, [256, 1, 1]]
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 8], 1, Concat, [1]] # cat backbone P4
  33. - [-1, 1, Bottleneck, [512, False]]
  34. - [-1, 1, Bottleneck, [512, False]]
  35. - [-1, 1, Conv, [256, 1, 1]]
  36. - [-1, 1, Conv, [512, 3, 1]] # 22 (P4/16-medium)
  37. - [-2, 1, Conv, [128, 1, 1]]
  38. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  39. - [[-1, 6], 1, Concat, [1]] # cat backbone P3
  40. - [-1, 1, Bottleneck, [256, False]]
  41. - [-1, 2, Bottleneck, [256, False]] # 27 (P3/8-small)
  42. - [[27, 22, 15], 1, Detect, [nc]] # Detect(P3, P4, P5)