123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import json
- import cv2
- import numpy as np
- from ultralytics.solutions.solutions import BaseSolution
- from ultralytics.utils import LOGGER
- from ultralytics.utils.checks import check_requirements
- from ultralytics.utils.plotting import Annotator
- class ParkingPtsSelection:
- """
- A class for selecting and managing parking zone points on images using a Tkinter-based UI.
- This class provides functionality to upload an image, select points to define parking zones, and save the
- selected points to a JSON file. It uses Tkinter for the graphical user interface.
- Attributes:
- tk (module): The Tkinter module for GUI operations.
- filedialog (module): Tkinter's filedialog module for file selection operations.
- messagebox (module): Tkinter's messagebox module for displaying message boxes.
- master (tk.Tk): The main Tkinter window.
- canvas (tk.Canvas): The canvas widget for displaying the image and drawing bounding boxes.
- image (PIL.Image.Image): The uploaded image.
- canvas_image (ImageTk.PhotoImage): The image displayed on the canvas.
- rg_data (List[List[Tuple[int, int]]]): List of bounding boxes, each defined by 4 points.
- current_box (List[Tuple[int, int]]): Temporary storage for the points of the current bounding box.
- imgw (int): Original width of the uploaded image.
- imgh (int): Original height of the uploaded image.
- canvas_max_width (int): Maximum width of the canvas.
- canvas_max_height (int): Maximum height of the canvas.
- Methods:
- initialize_properties: Initializes the necessary properties.
- upload_image: Uploads an image, resizes it to fit the canvas, and displays it.
- on_canvas_click: Handles mouse clicks to add points for bounding boxes.
- draw_box: Draws a bounding box on the canvas.
- remove_last_bounding_box: Removes the last bounding box and redraws the canvas.
- redraw_canvas: Redraws the canvas with the image and all bounding boxes.
- save_to_json: Saves the bounding boxes to a JSON file.
- Examples:
- >>> parking_selector = ParkingPtsSelection()
- >>> # Use the GUI to upload an image, select parking zones, and save the data
- """
- def __init__(self):
- """Initializes the ParkingPtsSelection class, setting up UI and properties for parking zone point selection."""
- check_requirements("tkinter")
- import tkinter as tk
- from tkinter import filedialog, messagebox
- self.tk, self.filedialog, self.messagebox = tk, filedialog, messagebox
- self.master = self.tk.Tk() # Reference to the main application window or parent widget
- self.master.title("Ultralytics Parking Zones Points Selector")
- self.master.resizable(False, False)
- self.canvas = self.tk.Canvas(self.master, bg="white") # Canvas widget for displaying images or graphics
- self.canvas.pack(side=self.tk.BOTTOM)
- self.image = None # Variable to store the loaded image
- self.canvas_image = None # Reference to the image displayed on the canvas
- self.canvas_max_width = None # Maximum allowed width for the canvas
- self.canvas_max_height = None # Maximum allowed height for the canvas
- self.rg_data = None # Data related to region or annotation management
- self.current_box = None # Stores the currently selected or active bounding box
- self.imgh = None # Height of the current image
- self.imgw = None # Width of the current image
- # Button frame with buttons
- button_frame = self.tk.Frame(self.master)
- button_frame.pack(side=self.tk.TOP)
- for text, cmd in [
- ("Upload Image", self.upload_image),
- ("Remove Last BBox", self.remove_last_bounding_box),
- ("Save", self.save_to_json),
- ]:
- self.tk.Button(button_frame, text=text, command=cmd).pack(side=self.tk.LEFT)
- self.initialize_properties()
- self.master.mainloop()
- def initialize_properties(self):
- """Initialize properties for image, canvas, bounding boxes, and dimensions."""
- self.image = self.canvas_image = None
- self.rg_data, self.current_box = [], []
- self.imgw = self.imgh = 0
- self.canvas_max_width, self.canvas_max_height = 1280, 720
- def upload_image(self):
- """Uploads and displays an image on the canvas, resizing it to fit within specified dimensions."""
- from PIL import Image, ImageTk # scope because ImageTk requires tkinter package
- self.image = Image.open(self.filedialog.askopenfilename(filetypes=[("Image Files", "*.png *.jpg *.jpeg")]))
- if not self.image:
- return
- self.imgw, self.imgh = self.image.size
- aspect_ratio = self.imgw / self.imgh
- canvas_width = (
- min(self.canvas_max_width, self.imgw) if aspect_ratio > 1 else int(self.canvas_max_height * aspect_ratio)
- )
- canvas_height = (
- min(self.canvas_max_height, self.imgh) if aspect_ratio <= 1 else int(canvas_width / aspect_ratio)
- )
- self.canvas.config(width=canvas_width, height=canvas_height)
- self.canvas_image = ImageTk.PhotoImage(self.image.resize((canvas_width, canvas_height)))
- self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
- self.canvas.bind("<Button-1>", self.on_canvas_click)
- self.rg_data.clear(), self.current_box.clear()
- def on_canvas_click(self, event):
- """Handles mouse clicks to add points for bounding boxes on the canvas."""
- self.current_box.append((event.x, event.y))
- self.canvas.create_oval(event.x - 3, event.y - 3, event.x + 3, event.y + 3, fill="red")
- if len(self.current_box) == 4:
- self.rg_data.append(self.current_box.copy())
- self.draw_box(self.current_box)
- self.current_box.clear()
- def draw_box(self, box):
- """Draws a bounding box on the canvas using the provided coordinates."""
- for i in range(4):
- self.canvas.create_line(box[i], box[(i + 1) % 4], fill="blue", width=2)
- def remove_last_bounding_box(self):
- """Removes the last bounding box from the list and redraws the canvas."""
- if not self.rg_data:
- self.messagebox.showwarning("Warning", "No bounding boxes to remove.")
- return
- self.rg_data.pop()
- self.redraw_canvas()
- def redraw_canvas(self):
- """Redraws the canvas with the image and all bounding boxes."""
- self.canvas.delete("all")
- self.canvas.create_image(0, 0, anchor=self.tk.NW, image=self.canvas_image)
- for box in self.rg_data:
- self.draw_box(box)
- def save_to_json(self):
- """Saves the selected parking zone points to a JSON file with scaled coordinates."""
- scale_w, scale_h = self.imgw / self.canvas.winfo_width(), self.imgh / self.canvas.winfo_height()
- data = [{"points": [(int(x * scale_w), int(y * scale_h)) for x, y in box]} for box in self.rg_data]
- from io import StringIO # Function level import, as it's only required to store coordinates, not every frame
- write_buffer = StringIO()
- json.dump(data, write_buffer, indent=4)
- with open("bounding_boxes.json", "w", encoding="utf-8") as f:
- f.write(write_buffer.getvalue())
- self.messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")
- class ParkingManagement(BaseSolution):
- """
- Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization.
- This class extends BaseSolution to provide functionality for parking lot management, including detection of
- occupied spaces, visualization of parking regions, and display of occupancy statistics.
- Attributes:
- json_file (str): Path to the JSON file containing parking region details.
- json (List[Dict]): Loaded JSON data containing parking region information.
- pr_info (Dict[str, int]): Dictionary storing parking information (Occupancy and Available spaces).
- arc (Tuple[int, int, int]): RGB color tuple for available region visualization.
- occ (Tuple[int, int, int]): RGB color tuple for occupied region visualization.
- dc (Tuple[int, int, int]): RGB color tuple for centroid visualization of detected objects.
- Methods:
- process_data: Processes model data for parking lot management and visualization.
- Examples:
- >>> from ultralytics.solutions import ParkingManagement
- >>> parking_manager = ParkingManagement(model="yolov8n.pt", json_file="parking_regions.json")
- >>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}")
- >>> print(f"Available spaces: {parking_manager.pr_info['Available']}")
- """
- def __init__(self, **kwargs):
- """Initializes the parking management system with a YOLO model and visualization settings."""
- super().__init__(**kwargs)
- self.json_file = self.CFG["json_file"] # Load JSON data
- if self.json_file is None:
- LOGGER.warning("❌ json_file argument missing. Parking region details required.")
- raise ValueError("❌ Json file path can not be empty")
- with open(self.json_file) as f:
- self.json = json.load(f)
- self.pr_info = {"Occupancy": 0, "Available": 0} # dictionary for parking information
- self.arc = (0, 0, 255) # available region color
- self.occ = (0, 255, 0) # occupied region color
- self.dc = (255, 0, 189) # centroid color for each box
- def process_data(self, im0):
- """
- Processes the model data for parking lot management.
- This function analyzes the input image, extracts tracks, and determines the occupancy status of parking
- regions defined in the JSON file. It annotates the image with occupied and available parking spots,
- and updates the parking information.
- Args:
- im0 (np.ndarray): The input inference image.
- Examples:
- >>> parking_manager = ParkingManagement(json_file="parking_regions.json")
- >>> image = cv2.imread("parking_lot.jpg")
- >>> parking_manager.process_data(image)
- """
- self.extract_tracks(im0) # extract tracks from im0
- es, fs = len(self.json), 0 # empty slots, filled slots
- annotator = Annotator(im0, self.line_width) # init annotator
- for region in self.json:
- # Convert points to a NumPy array with the correct dtype and reshape properly
- pts_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2))
- rg_occupied = False # occupied region initialization
- for box, cls in zip(self.boxes, self.clss):
- xc, yc = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
- dist = cv2.pointPolygonTest(pts_array, (xc, yc), False)
- if dist >= 0:
- # cv2.circle(im0, (xc, yc), radius=self.line_width * 4, color=self.dc, thickness=-1)
- annotator.display_objects_labels(
- im0, self.model.names[int(cls)], (104, 31, 17), (255, 255, 255), xc, yc, 10
- )
- rg_occupied = True
- break
- fs, es = (fs + 1, es - 1) if rg_occupied else (fs, es)
- # Plotting regions
- cv2.polylines(im0, [pts_array], isClosed=True, color=self.occ if rg_occupied else self.arc, thickness=2)
- self.pr_info["Occupancy"], self.pr_info["Available"] = fs, es
- annotator.display_analytics(im0, self.pr_info, (104, 31, 17), (255, 255, 255), 10)
- self.display_output(im0) # display output with base class function
- return im0 # return output image for more usage
|