12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175 |
- # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
- import inspect
- from pathlib import Path
- from typing import Any, Dict, List, Union
- import numpy as np
- import torch
- from PIL import Image
- from huggingface_hub import PyTorchModelHubMixin
- from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
- from ultralytics.engine.results import Results
- from ultralytics.hub import HUB_WEB_ROOT, HUBTrainingSession
- from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
- from ultralytics.utils import (
- ARGV,
- ASSETS,
- DEFAULT_CFG_DICT,
- LOGGER,
- RANK,
- SETTINGS,
- callbacks,
- checks,
- emojis,
- yaml_load,
- )
- class Model(nn.Module, PyTorchModelHubMixin, repo_url="https://github.com/ultralytics/ultralytics", pipeline_tag="object-detection", license="agpl-3.0"):
- """
- A base class for implementing YOLO models, unifying APIs across different model types.
- This class provides a common interface for various operations related to YOLO models, such as training,
- validation, prediction, exporting, and benchmarking. It handles different types of models, including those
- loaded from local files, Ultralytics HUB, or Triton Server.
- Attributes:
- callbacks (Dict): A dictionary of callback functions for various events during model operations.
- predictor (BasePredictor): The predictor object used for making predictions.
- model (nn.Module): The underlying PyTorch model.
- trainer (BaseTrainer): The trainer object used for training the model.
- ckpt (Dict): The checkpoint data if the model is loaded from a *.pt file.
- cfg (str): The configuration of the model if loaded from a *.yaml file.
- ckpt_path (str): The path to the checkpoint file.
- overrides (Dict): A dictionary of overrides for model configuration.
- metrics (Dict): The latest training/validation metrics.
- session (HUBTrainingSession): The Ultralytics HUB session, if applicable.
- task (str): The type of task the model is intended for.
- model_name (str): The name of the model.
- Methods:
- __call__: Alias for the predict method, enabling the model instance to be callable.
- _new: Initializes a new model based on a configuration file.
- _load: Loads a model from a checkpoint file.
- _check_is_pytorch_model: Ensures that the model is a PyTorch model.
- reset_weights: Resets the model's weights to their initial state.
- load: Loads model weights from a specified file.
- save: Saves the current state of the model to a file.
- info: Logs or returns information about the model.
- fuse: Fuses Conv2d and BatchNorm2d layers for optimized inference.
- predict: Performs object detection predictions.
- track: Performs object tracking.
- val: Validates the model on a dataset.
- benchmark: Benchmarks the model on various export formats.
- export: Exports the model to different formats.
- train: Trains the model on a dataset.
- tune: Performs hyperparameter tuning.
- _apply: Applies a function to the model's tensors.
- add_callback: Adds a callback function for an event.
- clear_callback: Clears all callbacks for an event.
- reset_callbacks: Resets all callbacks to their default functions.
- Examples:
- >>> from ultralytics import YOLO
- >>> model = YOLO("yolo11n.pt")
- >>> results = model.predict("image.jpg")
- >>> model.train(data="coco8.yaml", epochs=3)
- >>> metrics = model.val()
- >>> model.export(format="onnx")
- """
- def __init__(
- self,
- model: Union[str, Path] = "yolo11n.pt",
- task: str = None,
- verbose: bool = False,
- ) -> None:
- """
- Initializes a new instance of the YOLO model class.
- This constructor sets up the model based on the provided model path or name. It handles various types of
- model sources, including local files, Ultralytics HUB models, and Triton Server models. The method
- initializes several important attributes of the model and prepares it for operations like training,
- prediction, or export.
- Args:
- model (Union[str, Path]): Path or name of the model to load or create. Can be a local file path, a
- model name from Ultralytics HUB, or a Triton Server model.
- task (str | None): The task type associated with the YOLO model, specifying its application domain.
- verbose (bool): If True, enables verbose output during the model's initialization and subsequent
- operations.
- Raises:
- FileNotFoundError: If the specified model file does not exist or is inaccessible.
- ValueError: If the model file or configuration is invalid or unsupported.
- ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
- Examples:
- >>> model = Model("yolo11n.pt")
- >>> model = Model("path/to/model.yaml", task="detect")
- >>> model = Model("hub_model", verbose=True)
- """
- super().__init__()
- self.callbacks = callbacks.get_default_callbacks()
- self.predictor = None # reuse predictor
- self.model = None # model object
- self.trainer = None # trainer object
- self.ckpt = {} # if loaded from *.pt
- self.cfg = None # if loaded from *.yaml
- self.ckpt_path = None
- self.overrides = {} # overrides for trainer object
- self.metrics = None # validation/training metrics
- self.session = None # HUB session
- self.task = task # task type
- model = str(model).strip()
- # Check if Ultralytics HUB model from https://hub.ultralytics.com
- if self.is_hub_model(model):
- # Fetch model from HUB
- checks.check_requirements("hub-sdk>=0.0.12")
- session = HUBTrainingSession.create_session(model)
- model = session.model_file
- if session.train_args: # training sent from HUB
- self.session = session
- # Check if Triton Server model
- elif self.is_triton_model(model):
- self.model_name = self.model = model
- self.overrides["task"] = task or "detect" # set `task=detect` if not explicitly set
- return
- # Load or create new YOLO model
- if Path(model).suffix in {".yaml", ".yml"}:
- self._new(model, task=task, verbose=verbose)
- else:
- self._load(model, task=task)
- # Delete super().training for accessing self.model.training
- del self.training
- def __call__(
- self,
- source: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor] = None,
- stream: bool = False,
- **kwargs: Any,
- ) -> list:
- """
- Alias for the predict method, enabling the model instance to be callable for predictions.
- This method simplifies the process of making predictions by allowing the model instance to be called
- directly with the required arguments.
- Args:
- source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | List | Tuple): The source of
- the image(s) to make predictions on. Can be a file path, URL, PIL image, numpy array, PyTorch
- tensor, or a list/tuple of these.
- stream (bool): If True, treat the input source as a continuous stream for predictions.
- **kwargs: Additional keyword arguments to configure the prediction process.
- Returns:
- (List[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
- Results object.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> results = model("https://ultralytics.com/images/bus.jpg")
- >>> for r in results:
- ... print(f"Detected {len(r)} objects in image")
- """
- return self.predict(source, stream, **kwargs)
- @staticmethod
- def is_triton_model(model: str) -> bool:
- """
- Checks if the given model string is a Triton Server URL.
- This static method determines whether the provided model string represents a valid Triton Server URL by
- parsing its components using urllib.parse.urlsplit().
- Args:
- model (str): The model string to be checked.
- Returns:
- (bool): True if the model string is a valid Triton Server URL, False otherwise.
- Examples:
- >>> Model.is_triton_model("http://localhost:8000/v2/models/yolov8n")
- True
- >>> Model.is_triton_model("yolo11n.pt")
- False
- """
- from urllib.parse import urlsplit
- url = urlsplit(model)
- return url.netloc and url.path and url.scheme in {"http", "grpc"}
- @staticmethod
- def is_hub_model(model: str) -> bool:
- """
- Check if the provided model is an Ultralytics HUB model.
- This static method determines whether the given model string represents a valid Ultralytics HUB model
- identifier.
- Args:
- model (str): The model string to check.
- Returns:
- (bool): True if the model is a valid Ultralytics HUB model, False otherwise.
- Examples:
- >>> Model.is_hub_model("https://hub.ultralytics.com/models/MODEL")
- True
- >>> Model.is_hub_model("yolo11n.pt")
- False
- """
- return model.startswith(f"{HUB_WEB_ROOT}/models/")
- def _new(self, cfg: str, task=None, model=None, verbose=False) -> None:
- """
- Initializes a new model and infers the task type from the model definitions.
- This method creates a new model instance based on the provided configuration file. It loads the model
- configuration, infers the task type if not specified, and initializes the model using the appropriate
- class from the task map.
- Args:
- cfg (str): Path to the model configuration file in YAML format.
- task (str | None): The specific task for the model. If None, it will be inferred from the config.
- model (torch.nn.Module | None): A custom model instance. If provided, it will be used instead of creating
- a new one.
- verbose (bool): If True, displays model information during loading.
- Raises:
- ValueError: If the configuration file is invalid or the task cannot be inferred.
- ImportError: If the required dependencies for the specified task are not installed.
- Examples:
- >>> model = Model()
- >>> model._new("yolov8n.yaml", task="detect", verbose=True)
- """
- cfg_dict = yaml_model_load(cfg)
- self.cfg = cfg
- self.task = task or guess_model_task(cfg_dict)
- self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model
- self.overrides["model"] = self.cfg
- self.overrides["task"] = self.task
- # Below added to allow export from YAMLs
- self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args)
- self.model.task = self.task
- self.model_name = cfg
- def _load(self, weights: str, task=None) -> None:
- """
- Loads a model from a checkpoint file or initializes it from a weights file.
- This method handles loading models from either .pt checkpoint files or other weight file formats. It sets
- up the model, task, and related attributes based on the loaded weights.
- Args:
- weights (str): Path to the model weights file to be loaded.
- task (str | None): The task associated with the model. If None, it will be inferred from the model.
- Raises:
- FileNotFoundError: If the specified weights file does not exist or is inaccessible.
- ValueError: If the weights file format is unsupported or invalid.
- Examples:
- >>> model = Model()
- >>> model._load("yolo11n.pt")
- >>> model._load("path/to/weights.pth", task="detect")
- """
- if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
- weights = checks.check_file(weights, download_dir=SETTINGS["weights_dir"]) # download and return local file
- weights = checks.check_model_file_from_stem(weights) # add suffix, i.e. yolov8n -> yolov8n.pt
- if Path(weights).suffix == ".pt":
- self.model, self.ckpt = attempt_load_one_weight(weights)
- self.task = self.model.args["task"]
- self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
- self.ckpt_path = self.model.pt_path
- else:
- weights = checks.check_file(weights) # runs in all cases, not redundant with above call
- self.model, self.ckpt = weights, None
- self.task = task or guess_model_task(weights)
- self.ckpt_path = weights
- self.overrides["model"] = weights
- self.overrides["task"] = self.task
- self.model_name = weights
- def _check_is_pytorch_model(self) -> None:
- """
- Checks if the model is a PyTorch model and raises a TypeError if it's not.
- This method verifies that the model is either a PyTorch module or a .pt file. It's used to ensure that
- certain operations that require a PyTorch model are only performed on compatible model types.
- Raises:
- TypeError: If the model is not a PyTorch module or a .pt file. The error message provides detailed
- information about supported model formats and operations.
- Examples:
- >>> model = Model("yolo11n.pt")
- >>> model._check_is_pytorch_model() # No error raised
- >>> model = Model("yolov8n.onnx")
- >>> model._check_is_pytorch_model() # Raises TypeError
- """
- pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt"
- pt_module = isinstance(self.model, nn.Module)
- if not (pt_module or pt_str):
- raise TypeError(
- f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. "
- f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
- f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
- f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
- f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'"
- )
- def reset_weights(self) -> "Model":
- """
- Resets the model's weights to their initial state.
- This method iterates through all modules in the model and resets their parameters if they have a
- 'reset_parameters' method. It also ensures that all parameters have 'requires_grad' set to True,
- enabling them to be updated during training.
- Returns:
- (Model): The instance of the class with reset weights.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = Model("yolo11n.pt")
- >>> model.reset_weights()
- """
- self._check_is_pytorch_model()
- for m in self.model.modules():
- if hasattr(m, "reset_parameters"):
- m.reset_parameters()
- for p in self.model.parameters():
- p.requires_grad = True
- return self
- def load(self, weights: Union[str, Path] = "yolo11n.pt") -> "Model":
- """
- Loads parameters from the specified weights file into the model.
- This method supports loading weights from a file or directly from a weights object. It matches parameters by
- name and shape and transfers them to the model.
- Args:
- weights (Union[str, Path]): Path to the weights file or a weights object.
- Returns:
- (Model): The instance of the class with loaded weights.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = Model()
- >>> model.load("yolo11n.pt")
- >>> model.load(Path("path/to/weights.pt"))
- """
- self._check_is_pytorch_model()
- if isinstance(weights, (str, Path)):
- self.overrides["pretrained"] = weights # remember the weights for DDP training
- weights, self.ckpt = attempt_load_one_weight(weights)
- self.model.load(weights)
- return self
- def save(self, filename: Union[str, Path] = "saved_model.pt") -> None:
- """
- Saves the current model state to a file.
- This method exports the model's checkpoint (ckpt) to the specified filename. It includes metadata such as
- the date, Ultralytics version, license information, and a link to the documentation.
- Args:
- filename (Union[str, Path]): The name of the file to save the model to.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = Model("yolo11n.pt")
- >>> model.save("my_model.pt")
- """
- self._check_is_pytorch_model()
- from copy import deepcopy
- from datetime import datetime
- from ultralytics import __version__
- updates = {
- "model": deepcopy(self.model).half() if isinstance(self.model, nn.Module) else self.model,
- "date": datetime.now().isoformat(),
- "version": __version__,
- "license": "AGPL-3.0 License (https://ultralytics.com/license)",
- "docs": "https://docs.ultralytics.com",
- }
- torch.save({**self.ckpt, **updates}, filename)
- def info(self, detailed: bool = False, verbose: bool = True):
- """
- Logs or returns model information.
- This method provides an overview or detailed information about the model, depending on the arguments
- passed. It can control the verbosity of the output and return the information as a list.
- Args:
- detailed (bool): If True, shows detailed information about the model layers and parameters.
- verbose (bool): If True, prints the information. If False, returns the information as a list.
- Returns:
- (List[str]): A list of strings containing various types of information about the model, including
- model summary, layer details, and parameter counts. Empty if verbose is True.
- Raises:
- TypeError: If the model is not a PyTorch model.
- Examples:
- >>> model = Model("yolo11n.pt")
- >>> model.info() # Prints model summary
- >>> info_list = model.info(detailed=True, verbose=False) # Returns detailed info as a list
- """
- self._check_is_pytorch_model()
- return self.model.info(detailed=detailed, verbose=verbose)
- def fuse(self):
- """
- Fuses Conv2d and BatchNorm2d layers in the model for optimized inference.
- This method iterates through the model's modules and fuses consecutive Conv2d and BatchNorm2d layers
- into a single layer. This fusion can significantly improve inference speed by reducing the number of
- operations and memory accesses required during forward passes.
- The fusion process typically involves folding the BatchNorm2d parameters (mean, variance, weight, and
- bias) into the preceding Conv2d layer's weights and biases. This results in a single Conv2d layer that
- performs both convolution and normalization in one step.
- Raises:
- TypeError: If the model is not a PyTorch nn.Module.
- Examples:
- >>> model = Model("yolo11n.pt")
- >>> model.fuse()
- >>> # Model is now fused and ready for optimized inference
- """
- self._check_is_pytorch_model()
- self.model.fuse()
- def embed(
- self,
- source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
- stream: bool = False,
- **kwargs: Any,
- ) -> list:
- """
- Generates image embeddings based on the provided source.
- This method is a wrapper around the 'predict()' method, focusing on generating embeddings from an image
- source. It allows customization of the embedding process through various keyword arguments.
- Args:
- source (str | Path | int | List | Tuple | np.ndarray | torch.Tensor): The source of the image for
- generating embeddings. Can be a file path, URL, PIL image, numpy array, etc.
- stream (bool): If True, predictions are streamed.
- **kwargs: Additional keyword arguments for configuring the embedding process.
- Returns:
- (List[torch.Tensor]): A list containing the image embeddings.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> image = "https://ultralytics.com/images/bus.jpg"
- >>> embeddings = model.embed(image)
- >>> print(embeddings[0].shape)
- """
- if not kwargs.get("embed"):
- kwargs["embed"] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
- return self.predict(source, stream, **kwargs)
- def predict(
- self,
- source: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor] = None,
- stream: bool = False,
- predictor=None,
- **kwargs: Any,
- ) -> List[Results]:
- """
- Performs predictions on the given image source using the YOLO model.
- This method facilitates the prediction process, allowing various configurations through keyword arguments.
- It supports predictions with custom predictors or the default predictor method. The method handles different
- types of image sources and can operate in a streaming mode.
- Args:
- source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | List | Tuple): The source
- of the image(s) to make predictions on. Accepts various types including file paths, URLs, PIL
- images, numpy arrays, and torch tensors.
- stream (bool): If True, treats the input source as a continuous stream for predictions.
- predictor (BasePredictor | None): An instance of a custom predictor class for making predictions.
- If None, the method uses a default predictor.
- **kwargs: Additional keyword arguments for configuring the prediction process.
- Returns:
- (List[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
- Results object.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> results = model.predict(source="path/to/image.jpg", conf=0.25)
- >>> for r in results:
- ... print(r.boxes.data) # print detection bounding boxes
- Notes:
- - If 'source' is not provided, it defaults to the ASSETS constant with a warning.
- - The method sets up a new predictor if not already present and updates its arguments with each call.
- - For SAM-type models, 'prompts' can be passed as a keyword argument.
- """
- if source is None:
- source = ASSETS
- LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
- is_cli = (ARGV[0].endswith("yolo") or ARGV[0].endswith("ultralytics")) and any(
- x in ARGV for x in ("predict", "track", "mode=predict", "mode=track")
- )
- custom = {"conf": 0.25, "batch": 1, "save": is_cli, "mode": "predict"} # method defaults
- args = {**self.overrides, **custom, **kwargs} # highest priority args on the right
- prompts = args.pop("prompts", None) # for SAM-type models
- if not self.predictor:
- self.predictor = (predictor or self._smart_load("predictor"))(overrides=args, _callbacks=self.callbacks)
- self.predictor.setup_model(model=self.model, verbose=is_cli)
- else: # only update args if predictor is already setup
- self.predictor.args = get_cfg(self.predictor.args, args)
- if "project" in args or "name" in args:
- self.predictor.save_dir = get_save_dir(self.predictor.args)
- if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models
- self.predictor.set_prompts(prompts)
- return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
- def track(
- self,
- source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
- stream: bool = False,
- persist: bool = False,
- **kwargs: Any,
- ) -> List[Results]:
- """
- Conducts object tracking on the specified input source using the registered trackers.
- This method performs object tracking using the model's predictors and optionally registered trackers. It handles
- various input sources such as file paths or video streams, and supports customization through keyword arguments.
- The method registers trackers if not already present and can persist them between calls.
- Args:
- source (Union[str, Path, int, List, Tuple, np.ndarray, torch.Tensor], optional): Input source for object
- tracking. Can be a file path, URL, or video stream.
- stream (bool): If True, treats the input source as a continuous video stream. Defaults to False.
- persist (bool): If True, persists trackers between different calls to this method. Defaults to False.
- **kwargs: Additional keyword arguments for configuring the tracking process.
- Returns:
- (List[ultralytics.engine.results.Results]): A list of tracking results, each a Results object.
- Raises:
- AttributeError: If the predictor does not have registered trackers.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> results = model.track(source="path/to/video.mp4", show=True)
- >>> for r in results:
- ... print(r.boxes.id) # print tracking IDs
- Notes:
- - This method sets a default confidence threshold of 0.1 for ByteTrack-based tracking.
- - The tracking mode is explicitly set in the keyword arguments.
- - Batch size is set to 1 for tracking in videos.
- """
- if not hasattr(self.predictor, "trackers"):
- from ultralytics.trackers import register_tracker
- register_tracker(self, persist)
- kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input
- kwargs["batch"] = kwargs.get("batch") or 1 # batch-size 1 for tracking in videos
- kwargs["mode"] = "track"
- return self.predict(source=source, stream=stream, **kwargs)
- def val(
- self,
- validator=None,
- **kwargs: Any,
- ):
- """
- Validates the model using a specified dataset and validation configuration.
- This method facilitates the model validation process, allowing for customization through various settings. It
- supports validation with a custom validator or the default validation approach. The method combines default
- configurations, method-specific defaults, and user-provided arguments to configure the validation process.
- Args:
- validator (ultralytics.engine.validator.BaseValidator | None): An instance of a custom validator class for
- validating the model.
- **kwargs: Arbitrary keyword arguments for customizing the validation process.
- Returns:
- (ultralytics.utils.metrics.DetMetrics): Validation metrics obtained from the validation process.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> results = model.val(data="coco8.yaml", imgsz=640)
- >>> print(results.box.map) # Print mAP50-95
- """
- custom = {"rect": True} # method defaults
- args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right
- validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
- validator(model=self.model)
- self.metrics = validator.metrics
- return validator.metrics
- def benchmark(
- self,
- **kwargs: Any,
- ):
- """
- Benchmarks the model across various export formats to evaluate performance.
- This method assesses the model's performance in different export formats, such as ONNX, TorchScript, etc.
- It uses the 'benchmark' function from the ultralytics.utils.benchmarks module. The benchmarking is
- configured using a combination of default configuration values, model-specific arguments, method-specific
- defaults, and any additional user-provided keyword arguments.
- Args:
- **kwargs: Arbitrary keyword arguments to customize the benchmarking process. These are combined with
- default configurations, model-specific arguments, and method defaults. Common options include:
- - data (str): Path to the dataset for benchmarking.
- - imgsz (int | List[int]): Image size for benchmarking.
- - half (bool): Whether to use half-precision (FP16) mode.
- - int8 (bool): Whether to use int8 precision mode.
- - device (str): Device to run the benchmark on (e.g., 'cpu', 'cuda').
- - verbose (bool): Whether to print detailed benchmark information.
- Returns:
- (Dict): A dictionary containing the results of the benchmarking process, including metrics for
- different export formats.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> results = model.benchmark(data="coco8.yaml", imgsz=640, half=True)
- >>> print(results)
- """
- self._check_is_pytorch_model()
- from ultralytics.utils.benchmarks import benchmark
- custom = {"verbose": False} # method defaults
- args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, "mode": "benchmark"}
- return benchmark(
- model=self,
- data=kwargs.get("data"), # if no 'data' argument passed set data=None for default datasets
- imgsz=args["imgsz"],
- half=args["half"],
- int8=args["int8"],
- device=args["device"],
- verbose=kwargs.get("verbose"),
- )
- def export(
- self,
- **kwargs: Any,
- ) -> str:
- """
- Exports the model to a different format suitable for deployment.
- This method facilitates the export of the model to various formats (e.g., ONNX, TorchScript) for deployment
- purposes. It uses the 'Exporter' class for the export process, combining model-specific overrides, method
- defaults, and any additional arguments provided.
- Args:
- **kwargs: Arbitrary keyword arguments to customize the export process. These are combined with
- the model's overrides and method defaults. Common arguments include:
- format (str): Export format (e.g., 'onnx', 'engine', 'coreml').
- half (bool): Export model in half-precision.
- int8 (bool): Export model in int8 precision.
- device (str): Device to run the export on.
- workspace (int): Maximum memory workspace size for TensorRT engines.
- nms (bool): Add Non-Maximum Suppression (NMS) module to model.
- simplify (bool): Simplify ONNX model.
- Returns:
- (str): The path to the exported model file.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- ValueError: If an unsupported export format is specified.
- RuntimeError: If the export process fails due to errors.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> model.export(format="onnx", dynamic=True, simplify=True)
- 'path/to/exported/model.onnx'
- """
- self._check_is_pytorch_model()
- from .exporter import Exporter
- custom = {
- "imgsz": self.model.args["imgsz"],
- "batch": 1,
- "data": None,
- "device": None, # reset to avoid multi-GPU errors
- "verbose": False,
- } # method defaults
- args = {**self.overrides, **custom, **kwargs, "mode": "export"} # highest priority args on the right
- return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
- def train(
- self,
- trainer=None,
- **kwargs: Any,
- ):
- """
- Trains the model using the specified dataset and training configuration.
- This method facilitates model training with a range of customizable settings. It supports training with a
- custom trainer or the default training approach. The method handles scenarios such as resuming training
- from a checkpoint, integrating with Ultralytics HUB, and updating model and configuration after training.
- When using Ultralytics HUB, if the session has a loaded model, the method prioritizes HUB training
- arguments and warns if local arguments are provided. It checks for pip updates and combines default
- configurations, method-specific defaults, and user-provided arguments to configure the training process.
- Args:
- trainer (BaseTrainer | None): Custom trainer instance for model training. If None, uses default.
- **kwargs: Arbitrary keyword arguments for training configuration. Common options include:
- data (str): Path to dataset configuration file.
- epochs (int): Number of training epochs.
- batch_size (int): Batch size for training.
- imgsz (int): Input image size.
- device (str): Device to run training on (e.g., 'cuda', 'cpu').
- workers (int): Number of worker threads for data loading.
- optimizer (str): Optimizer to use for training.
- lr0 (float): Initial learning rate.
- patience (int): Epochs to wait for no observable improvement for early stopping of training.
- Returns:
- (Dict | None): Training metrics if available and training is successful; otherwise, None.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- PermissionError: If there is a permission issue with the HUB session.
- ModuleNotFoundError: If the HUB SDK is not installed.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> results = model.train(data="coco8.yaml", epochs=3)
- """
- self._check_is_pytorch_model()
- if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
- if any(kwargs):
- LOGGER.warning("WARNING ⚠️ using HUB training arguments, ignoring local training arguments.")
- kwargs = self.session.train_args # overwrite kwargs
- checks.check_pip_update_available()
- overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
- custom = {
- # NOTE: handle the case when 'cfg' includes 'data'.
- "data": overrides.get("data") or DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task],
- "model": self.overrides["model"],
- "task": self.task,
- } # method defaults
- args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
- if args.get("resume"):
- args["resume"] = self.ckpt_path
- self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks)
- if not args.get("resume"): # manually set model only if not resuming
- self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
- self.model = self.trainer.model
- self.trainer.hub_session = self.session # attach optional HUB session
- self.trainer.train()
- # Update model and cfg after training
- if RANK in {-1, 0}:
- ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
- self.model, self.ckpt = attempt_load_one_weight(ckpt)
- self.overrides = self.model.args
- self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
- return self.metrics
- def tune(
- self,
- use_ray=False,
- iterations=10,
- *args: Any,
- **kwargs: Any,
- ):
- """
- Conducts hyperparameter tuning for the model, with an option to use Ray Tune.
- This method supports two modes of hyperparameter tuning: using Ray Tune or a custom tuning method.
- When Ray Tune is enabled, it leverages the 'run_ray_tune' function from the ultralytics.utils.tuner module.
- Otherwise, it uses the internal 'Tuner' class for tuning. The method combines default, overridden, and
- custom arguments to configure the tuning process.
- Args:
- use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False.
- iterations (int): The number of tuning iterations to perform. Defaults to 10.
- *args: Variable length argument list for additional arguments.
- **kwargs: Arbitrary keyword arguments. These are combined with the model's overrides and defaults.
- Returns:
- (Dict): A dictionary containing the results of the hyperparameter search.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> results = model.tune(use_ray=True, iterations=20)
- >>> print(results)
- """
- self._check_is_pytorch_model()
- if use_ray:
- from ultralytics.utils.tuner import run_ray_tune
- return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
- else:
- from .tuner import Tuner
- custom = {} # method defaults
- args = {**self.overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
- return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
- def _apply(self, fn) -> "Model":
- """
- Applies a function to model tensors that are not parameters or registered buffers.
- This method extends the functionality of the parent class's _apply method by additionally resetting the
- predictor and updating the device in the model's overrides. It's typically used for operations like
- moving the model to a different device or changing its precision.
- Args:
- fn (Callable): A function to be applied to the model's tensors. This is typically a method like
- to(), cpu(), cuda(), half(), or float().
- Returns:
- (Model): The model instance with the function applied and updated attributes.
- Raises:
- AssertionError: If the model is not a PyTorch model.
- Examples:
- >>> model = Model("yolo11n.pt")
- >>> model = model._apply(lambda t: t.cuda()) # Move model to GPU
- """
- self._check_is_pytorch_model()
- self = super()._apply(fn) # noqa
- self.predictor = None # reset predictor as device may have changed
- self.overrides["device"] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
- return self
- @property
- def names(self) -> Dict[int, str]:
- """
- Retrieves the class names associated with the loaded model.
- This property returns the class names if they are defined in the model. It checks the class names for validity
- using the 'check_class_names' function from the ultralytics.nn.autobackend module. If the predictor is not
- initialized, it sets it up before retrieving the names.
- Returns:
- (Dict[int, str]): A dict of class names associated with the model.
- Raises:
- AttributeError: If the model or predictor does not have a 'names' attribute.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> print(model.names)
- {0: 'person', 1: 'bicycle', 2: 'car', ...}
- """
- from ultralytics.nn.autobackend import check_class_names
- if hasattr(self.model, "names"):
- return check_class_names(self.model.names)
- if not self.predictor: # export formats will not have predictor defined until predict() is called
- self.predictor = self._smart_load("predictor")(overrides=self.overrides, _callbacks=self.callbacks)
- self.predictor.setup_model(model=self.model, verbose=False)
- return self.predictor.model.names
- @property
- def device(self) -> torch.device:
- """
- Retrieves the device on which the model's parameters are allocated.
- This property determines the device (CPU or GPU) where the model's parameters are currently stored. It is
- applicable only to models that are instances of nn.Module.
- Returns:
- (torch.device): The device (CPU/GPU) of the model.
- Raises:
- AttributeError: If the model is not a PyTorch nn.Module instance.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> print(model.device)
- device(type='cuda', index=0) # if CUDA is available
- >>> model = model.to("cpu")
- >>> print(model.device)
- device(type='cpu')
- """
- return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
- @property
- def transforms(self):
- """
- Retrieves the transformations applied to the input data of the loaded model.
- This property returns the transformations if they are defined in the model. The transforms
- typically include preprocessing steps like resizing, normalization, and data augmentation
- that are applied to input data before it is fed into the model.
- Returns:
- (object | None): The transform object of the model if available, otherwise None.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> transforms = model.transforms
- >>> if transforms:
- ... print(f"Model transforms: {transforms}")
- ... else:
- ... print("No transforms defined for this model.")
- """
- return self.model.transforms if hasattr(self.model, "transforms") else None
- def add_callback(self, event: str, func) -> None:
- """
- Adds a callback function for a specified event.
- This method allows registering custom callback functions that are triggered on specific events during
- model operations such as training or inference. Callbacks provide a way to extend and customize the
- behavior of the model at various stages of its lifecycle.
- Args:
- event (str): The name of the event to attach the callback to. Must be a valid event name recognized
- by the Ultralytics framework.
- func (Callable): The callback function to be registered. This function will be called when the
- specified event occurs.
- Raises:
- ValueError: If the event name is not recognized or is invalid.
- Examples:
- >>> def on_train_start(trainer):
- ... print("Training is starting!")
- >>> model = YOLO("yolo11n.pt")
- >>> model.add_callback("on_train_start", on_train_start)
- >>> model.train(data="coco8.yaml", epochs=1)
- """
- self.callbacks[event].append(func)
- def clear_callback(self, event: str) -> None:
- """
- Clears all callback functions registered for a specified event.
- This method removes all custom and default callback functions associated with the given event.
- It resets the callback list for the specified event to an empty list, effectively removing all
- registered callbacks for that event.
- Args:
- event (str): The name of the event for which to clear the callbacks. This should be a valid event name
- recognized by the Ultralytics callback system.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> model.add_callback("on_train_start", lambda: print("Training started"))
- >>> model.clear_callback("on_train_start")
- >>> # All callbacks for 'on_train_start' are now removed
- Notes:
- - This method affects both custom callbacks added by the user and default callbacks
- provided by the Ultralytics framework.
- - After calling this method, no callbacks will be executed for the specified event
- until new ones are added.
- - Use with caution as it removes all callbacks, including essential ones that might
- be required for proper functioning of certain operations.
- """
- self.callbacks[event] = []
- def reset_callbacks(self) -> None:
- """
- Resets all callbacks to their default functions.
- This method reinstates the default callback functions for all events, removing any custom callbacks that were
- previously added. It iterates through all default callback events and replaces the current callbacks with the
- default ones.
- The default callbacks are defined in the 'callbacks.default_callbacks' dictionary, which contains predefined
- functions for various events in the model's lifecycle, such as on_train_start, on_epoch_end, etc.
- This method is useful when you want to revert to the original set of callbacks after making custom
- modifications, ensuring consistent behavior across different runs or experiments.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> model.add_callback("on_train_start", custom_function)
- >>> model.reset_callbacks()
- # All callbacks are now reset to their default functions
- """
- for event in callbacks.default_callbacks.keys():
- self.callbacks[event] = [callbacks.default_callbacks[event][0]]
- @staticmethod
- def _reset_ckpt_args(args: dict) -> dict:
- """
- Resets specific arguments when loading a PyTorch model checkpoint.
- This static method filters the input arguments dictionary to retain only a specific set of keys that are
- considered important for model loading. It's used to ensure that only relevant arguments are preserved
- when loading a model from a checkpoint, discarding any unnecessary or potentially conflicting settings.
- Args:
- args (dict): A dictionary containing various model arguments and settings.
- Returns:
- (dict): A new dictionary containing only the specified include keys from the input arguments.
- Examples:
- >>> original_args = {"imgsz": 640, "data": "coco.yaml", "task": "detect", "batch": 16, "epochs": 100}
- >>> reset_args = Model._reset_ckpt_args(original_args)
- >>> print(reset_args)
- {'imgsz': 640, 'data': 'coco.yaml', 'task': 'detect'}
- """
- include = {"imgsz", "data", "task", "single_cls"} # only remember these arguments when loading a PyTorch model
- return {k: v for k, v in args.items() if k in include}
- # def __getattr__(self, attr):
- # """Raises error if object has no requested attribute."""
- # name = self.__class__.__name__
- # raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
- def _smart_load(self, key: str):
- """
- Loads the appropriate module based on the model task.
- This method dynamically selects and returns the correct module (model, trainer, validator, or predictor)
- based on the current task of the model and the provided key. It uses the task_map attribute to determine
- the correct module to load.
- Args:
- key (str): The type of module to load. Must be one of 'model', 'trainer', 'validator', or 'predictor'.
- Returns:
- (object): The loaded module corresponding to the specified key and current task.
- Raises:
- NotImplementedError: If the specified key is not supported for the current task.
- Examples:
- >>> model = Model(task="detect")
- >>> predictor = model._smart_load("predictor")
- >>> trainer = model._smart_load("trainer")
- Notes:
- - This method is typically used internally by other methods of the Model class.
- - The task_map attribute should be properly initialized with the correct mappings for each task.
- """
- try:
- return self.task_map[self.task][key]
- except Exception as e:
- name = self.__class__.__name__
- mode = inspect.stack()[1][3] # get the function name.
- raise NotImplementedError(
- emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")
- ) from e
- @property
- def task_map(self) -> dict:
- """
- Provides a mapping from model tasks to corresponding classes for different modes.
- This property method returns a dictionary that maps each supported task (e.g., detect, segment, classify)
- to a nested dictionary. The nested dictionary contains mappings for different operational modes
- (model, trainer, validator, predictor) to their respective class implementations.
- The mapping allows for dynamic loading of appropriate classes based on the model's task and the
- desired operational mode. This facilitates a flexible and extensible architecture for handling
- various tasks and modes within the Ultralytics framework.
- Returns:
- (Dict[str, Dict[str, Any]]): A dictionary where keys are task names (str) and values are
- nested dictionaries. Each nested dictionary has keys 'model', 'trainer', 'validator', and
- 'predictor', mapping to their respective class implementations.
- Examples:
- >>> model = Model()
- >>> task_map = model.task_map
- >>> detect_class_map = task_map["detect"]
- >>> segment_class_map = task_map["segment"]
- Note:
- The actual implementation of this method may vary depending on the specific tasks and
- classes supported by the Ultralytics framework. The docstring provides a general
- description of the expected behavior and structure.
- """
- raise NotImplementedError("Please provide task map for your model!")
- def eval(self):
- """
- Sets the model to evaluation mode.
- This method changes the model's mode to evaluation, which affects layers like dropout and batch normalization
- that behave differently during training and evaluation.
- Returns:
- (Model): The model instance with evaluation mode set.
- Examples:
- >> model = YOLO("yolo11n.pt")
- >> model.eval()
- """
- self.model.eval()
- return self
- def __getattr__(self, name):
- """
- Enables accessing model attributes directly through the Model class.
- This method provides a way to access attributes of the underlying model directly through the Model class
- instance. It first checks if the requested attribute is 'model', in which case it returns the model from
- the module dictionary. Otherwise, it delegates the attribute lookup to the underlying model.
- Args:
- name (str): The name of the attribute to retrieve.
- Returns:
- (Any): The requested attribute value.
- Raises:
- AttributeError: If the requested attribute does not exist in the model.
- Examples:
- >>> model = YOLO("yolo11n.pt")
- >>> print(model.stride)
- >>> print(model.task)
- """
- return self._modules["model"] if name == "model" else getattr(self.model, name)
|