yolov8-p6.yaml 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. # Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
  3. # Model docs: https://docs.ultralytics.com/models/yolov8
  4. # Task docs: https://docs.ultralytics.com/tasks/detect
  5. # Parameters
  6. nc: 80 # number of classes
  7. scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
  8. # [depth, width, max_channels]
  9. n: [0.33, 0.25, 1024] # YOLOv8n-p6 summary (fused): 220 layers, 4976656 parameters, 42560 gradients, 8.7 GFLOPs
  10. s: [0.33, 0.50, 1024] # YOLOv8s-p6 summary (fused): 220 layers, 17897168 parameters, 57920 gradients, 28.5 GFLOPs
  11. m: [0.67, 0.75, 768] # YOLOv8m-p6 summary (fused): 285 layers, 44862352 parameters, 78400 gradients, 83.1 GFLOPs
  12. l: [1.00, 1.00, 512] # YOLOv8l-p6 summary (fused): 350 layers, 62351440 parameters, 98880 gradients, 167.3 GFLOPs
  13. x: [1.00, 1.25, 512] # YOLOv8x-p6 summary (fused): 350 layers, 97382352 parameters, 123456 gradients, 261.1 GFLOPs
  14. # YOLOv8.0x6 backbone
  15. backbone:
  16. # [from, repeats, module, args]
  17. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  18. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  19. - [-1, 3, C2f, [128, True]]
  20. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  21. - [-1, 6, C2f, [256, True]]
  22. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  23. - [-1, 6, C2f, [512, True]]
  24. - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
  25. - [-1, 3, C2f, [768, True]]
  26. - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
  27. - [-1, 3, C2f, [1024, True]]
  28. - [-1, 1, SPPF, [1024, 5]] # 11
  29. # YOLOv8.0x6 head
  30. head:
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 8], 1, Concat, [1]] # cat backbone P5
  33. - [-1, 3, C2, [768, False]] # 14
  34. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  35. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  36. - [-1, 3, C2, [512, False]] # 17
  37. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  38. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  39. - [-1, 3, C2, [256, False]] # 20 (P3/8-small)
  40. - [-1, 1, Conv, [256, 3, 2]]
  41. - [[-1, 17], 1, Concat, [1]] # cat head P4
  42. - [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
  43. - [-1, 1, Conv, [512, 3, 2]]
  44. - [[-1, 14], 1, Concat, [1]] # cat head P5
  45. - [-1, 3, C2, [768, False]] # 26 (P5/32-large)
  46. - [-1, 1, Conv, [768, 3, 2]]
  47. - [[-1, 11], 1, Concat, [1]] # cat head P6
  48. - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
  49. - [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)