yolov5.yaml 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
  2. # Ultralytics YOLOv5 object detection model with P3/8 - P5/32 outputs
  3. # Model docs: https://docs.ultralytics.com/models/yolov5
  4. # Task docs: https://docs.ultralytics.com/tasks/detect
  5. # Parameters
  6. nc: 80 # number of classes
  7. scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  8. # [depth, width, max_channels]
  9. n: [0.33, 0.25, 1024]
  10. s: [0.33, 0.50, 1024]
  11. m: [0.67, 0.75, 1024]
  12. l: [1.00, 1.00, 1024]
  13. x: [1.33, 1.25, 1024]
  14. # YOLOv5 v6.0 backbone
  15. backbone:
  16. # [from, number, module, args]
  17. - [-1, 1, Conv, [64, 6, 2, 2]] # 0-P1/2
  18. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  19. - [-1, 3, C3, [128]]
  20. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  21. - [-1, 6, C3, [256]]
  22. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  23. - [-1, 9, C3, [512]]
  24. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  25. - [-1, 3, C3, [1024]]
  26. - [-1, 1, SPPF, [1024, 5]] # 9
  27. # YOLOv5 v6.0 head
  28. head:
  29. - [-1, 1, Conv, [512, 1, 1]]
  30. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  31. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  32. - [-1, 3, C3, [512, False]] # 13
  33. - [-1, 1, Conv, [256, 1, 1]]
  34. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  35. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  36. - [-1, 3, C3, [256, False]] # 17 (P3/8-small)
  37. - [-1, 1, Conv, [256, 3, 2]]
  38. - [[-1, 14], 1, Concat, [1]] # cat head P4
  39. - [-1, 3, C3, [512, False]] # 20 (P4/16-medium)
  40. - [-1, 1, Conv, [512, 3, 2]]
  41. - [[-1, 10], 1, Concat, [1]] # cat head P5
  42. - [-1, 3, C3, [1024, False]] # 23 (P5/32-large)
  43. - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)